Leca-Bouvier Béatrice D, Sassolas Audrey, Blum Loïc J
Université de Lyon, Université Lyon 1, CNRS, UMR5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires, 69622, Villeurbanne Cedex, France,
Anal Bioanal Chem. 2014 Sep;406(23):5657-67. doi: 10.1007/s00216-014-7945-y. Epub 2014 Jun 18.
This paper reports on electrochemiluminescent sensors and biosensors based on polyluminol/hydrogel composite sensing layers using chemical or biological membranes as hydrogel matrices. In this work, luminol is electropolymerized under near-neutral conditions onto screen-printed electrode (SPE)-supported hydrogel films. The working electrode coated with a hydrogel film is soaked in a solution containing monomeric luminol units, allowing the monomeric luminol units to diffuse inside the porous matrix to the electrode surface where they are electropolymerized by cyclic voltammetry (CV). Sensors and enzymatic biosensors for H2O2 and choline detection, respectively, have been developed, using choline oxidase (ChOD) as a model enzyme. In this case, hydrogel is used both as the enzymatic immobilization matrix and as a template for the electrosynthesis of polyluminol. The enzyme was immobilized by entrapment in the gel matrix during its formation before electropolymerization of the monomer. Several parameters have been optimized in terms of polymerization conditions, enzyme loading, and average pore size. Using calcium alginate or tetramethoxysilane (TMOS)-based silica as porous matrix, H2O2 and choline detection are reported down to micromolar concentrations with three orders of magnitude wide dynamic ranges starting from 4 × 10(-7) M. Polyluminol/hydrogel composites appear as suitable electrochemiluminescence (ECL)-active sensing layers for the design of new reagentless and disposable easy-to-use optical sensors and biosensors, using conventional TMOS-based silica gel or the more original and easier to handle calcium alginate, reported here for the first time in such a configuration, as the biocompatible hydrogel matrix.
本文报道了基于聚鲁米诺/水凝胶复合传感层的电化学发光传感器和生物传感器,该复合传感层使用化学或生物膜作为水凝胶基质。在本工作中,鲁米诺在近中性条件下电聚合到丝网印刷电极(SPE)支撑的水凝胶薄膜上。将涂有水凝胶薄膜的工作电极浸泡在含有单体鲁米诺单元的溶液中,使单体鲁米诺单元在多孔基质内扩散到电极表面,在那里通过循环伏安法(CV)进行电聚合。分别开发了用于检测H2O2和胆碱的传感器和酶生物传感器,使用胆碱氧化酶(ChOD)作为模型酶。在这种情况下,水凝胶既用作酶固定化基质,又用作聚鲁米诺电合成的模板。在单体电聚合之前,酶在凝胶基质形成过程中通过包埋固定。在聚合条件、酶负载量和平均孔径方面对几个参数进行了优化。使用藻酸钙或基于四甲氧基硅烷(TMOS)的二氧化硅作为多孔基质,报道了从4×10(-7)M开始,检测H2O2和胆碱的浓度低至微摩尔级,动态范围宽达三个数量级。聚鲁米诺/水凝胶复合材料作为合适的电化学发光(ECL)活性传感层,适用于设计新型无试剂、一次性且易于使用的光学传感器和生物传感器,使用传统的基于TMOS的硅胶或更原始且易于处理的藻酸钙作为生物相容性水凝胶基质,本文首次报道了这种配置。