Suppr超能文献

文献组学:云端的PubMed规模基因组知识库。

Literome: PubMed-scale genomic knowledge base in the cloud.

作者信息

Poon Hoifung, Quirk Chris, DeZiel Charlie, Heckerman David

机构信息

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA.

出版信息

Bioinformatics. 2014 Oct;30(19):2840-2. doi: 10.1093/bioinformatics/btu383. Epub 2014 Jun 17.

Abstract

MOTIVATION

Advances in sequencing technology have led to an exponential growth of genomics data, yet it remains a formidable challenge to interpret such data for identifying disease genes and drug targets. There has been increasing interest in adopting a systems approach that incorporates prior knowledge such as gene networks and genotype-phenotype associations. The majority of such knowledge resides in text such as journal publications, which has been undergoing its own exponential growth. It has thus become a significant bottleneck to identify relevant knowledge for genomic interpretation as well as to keep up with new genomics findings.

RESULTS

In the Literome project, we have developed an automatic curation system to extract genomic knowledge from PubMed articles and made this knowledge available in the cloud with a Web site to facilitate browsing, searching and reasoning. Currently, Literome focuses on two types of knowledge most pertinent to genomic medicine: directed genic interactions such as pathways and genotype-phenotype associations. Users can search for interacting genes and the nature of the interactions, as well as diseases and drugs associated with a single nucleotide polymorphism or gene. Users can also search for indirect connections between two entities, e.g. a gene and a disease might be linked because an interacting gene is associated with a related disease.

AVAILABILITY AND IMPLEMENTATION

Literome is freely available at literome.azurewebsites.net. Download for non-commercial use is available via Web services.

摘要

动机

测序技术的进步导致基因组学数据呈指数级增长,但解读这些数据以识别疾病基因和药物靶点仍然是一项艰巨的挑战。采用整合基因网络和基因型-表型关联等先验知识的系统方法的兴趣与日俱增。此类知识大多存在于期刊出版物等文本中,而这些文本本身也在呈指数级增长。因此,识别基因组解读的相关知识以及跟上新的基因组学发现已成为一个重大瓶颈。

结果

在Literome项目中,我们开发了一个自动编目系统,从PubMed文章中提取基因组知识,并通过一个网站将这些知识发布到云端,以方便浏览、搜索和推理。目前,Literome专注于与基因组医学最相关的两种知识类型:诸如通路等直接基因相互作用以及基因型-表型关联。用户可以搜索相互作用的基因以及相互作用的性质,以及与单核苷酸多态性或基因相关的疾病和药物。用户还可以搜索两个实体之间的间接联系,例如一个基因和一种疾病可能因为一个相互作用的基因与一种相关疾病有关联而联系在一起。

可用性与实施

Literome可在literome.azurewebsites.net上免费获取。可通过网络服务进行非商业用途的下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验