Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
Am J Hum Genet. 2021 Oct 7;108(10):1946-1963. doi: 10.1016/j.ajhg.2021.08.010. Epub 2021 Sep 15.
Rare diseases affect millions of people worldwide, and discovering their genetic causes is challenging. More than half of the individuals analyzed by the Undiagnosed Diseases Network (UDN) remain undiagnosed. The central hypothesis of this work is that many of these rare genetic disorders are caused by multiple variants in more than one gene. However, given the large number of variants in each individual genome, experimentally evaluating combinations of variants for potential to cause disease is currently infeasible. To address this challenge, we developed the digenic predictor (DiGePred), a random forest classifier for identifying candidate digenic disease gene pairs by features derived from biological networks, genomics, evolutionary history, and functional annotations. We trained the DiGePred classifier by using DIDA, the largest available database of known digenic-disease-causing gene pairs, and several sets of non-digenic gene pairs, including variant pairs derived from unaffected relatives of UDN individuals. DiGePred achieved high precision and recall in cross-validation and on a held-out test set (PR area under the curve > 77%), and we further demonstrate its utility by using digenic pairs from the recent literature. In contrast to other approaches, DiGePred also appropriately controls the number of false positives when applied in realistic clinical settings. Finally, to enable the rapid screening of variant gene pairs for digenic disease potential, we freely provide the predictions of DiGePred on all human gene pairs. Our work enables the discovery of genetic causes for rare non-monogenic diseases by providing a means to rapidly evaluate variant gene pairs for the potential to cause digenic disease.
罕见病影响着全球数百万人,而发现其遗传病因具有挑战性。在未确诊疾病网络(UDN)中分析的个体中,超过一半仍然未被确诊。这项工作的核心假设是,这些罕见的遗传疾病中有许多是由一个以上基因中的多个变体引起的。然而,鉴于每个人类基因组中存在大量变体,目前实验评估变体组合是否具有潜在致病作用是不可行的。为了解决这一挑战,我们开发了双基因预测器(DiGePred),这是一种随机森林分类器,用于通过来自生物网络、基因组学、进化历史和功能注释的特征来识别候选双基因疾病基因对。我们使用 DIDA 训练了 DiGePred 分类器,DIDA 是已知双基因致病基因对的最大可用数据库,以及几套非双基因基因对,包括来自 UDN 个体无亲缘关系的变体对。DiGePred 在交叉验证和保留测试集上实现了高精度和高召回率(PR 曲线下面积>77%),我们还通过使用最近文献中的双基因对进一步证明了其效用。与其他方法相比,DiGePred 在应用于实际临床环境时还适当控制了假阳性的数量。最后,为了能够快速筛选双基因疾病潜在变体基因对,我们免费提供 DiGePred 对所有人类基因对的预测。我们的工作通过提供一种快速评估变体基因对双基因疾病潜在致病作用的方法,为发现罕见的非单基因疾病的遗传病因提供了可能。