Suppr超能文献

使用 GeneDive 搜索和可视化基因-药物-疾病相互作用,用于药物基因组学和精准医学研究。

Search and visualization of gene-drug-disease interactions for pharmacogenomics and precision medicine research using GeneDive.

机构信息

COSE Computing for Life Sciences, San Francisco State University, San Francisco, CA, United States.

Department of Computer Science, San Francisco State University, San Francisco, CA, United States.

出版信息

J Biomed Inform. 2021 May;117:103732. doi: 10.1016/j.jbi.2021.103732. Epub 2021 Mar 16.

Abstract

BACKGROUND

Understanding the relationships between genes, drugs, and disease states is at the core of pharmacogenomics. Two leading approaches for identifying these relationships in medical literature are: human expert led manual curation efforts, and modern data mining based automated approaches. The former generates small amounts of high-quality data, and the latter offers large volumes of mixed quality data. The algorithmically extracted relationships are often accompanied by supporting evidence, such as, confidence scores, source articles, and surrounding contexts (excerpts) from the articles, that can be used as data quality indicators. Tools that can leverage these quality indicators to help the user gain access to larger and high-quality data are needed.

APPROACH

We introduce GeneDive, a web application for pharmacogenomics researchers and precision medicine practitioners that makes gene, disease, and drug interactions data easily accessible and usable. GeneDive is designed to meet three key objectives: (1) provide functionality to manage information-overload problem and facilitate easy assimilation of supporting evidence, (2) support longitudinal and exploratory research investigations, and (3) offer integration of user-provided interactions data without requiring data sharing.

RESULTS

GeneDive offers multiple search modalities, visualizations, and other features that guide the user efficiently to the information of their interest. To facilitate exploratory research, GeneDive makes the supporting evidence and context for each interaction readily available and allows the data quality threshold to be controlled by the user as per their risk tolerance level. The interactive search-visualization loop enables relationship discoveries between diseases, genes, and drugs that might not be explicitly described in literature but are emergent from the source medical corpus and deductive reasoning. The ability to utilize user's data either in combination with the GeneDive native datasets or in isolation promotes richer data-driven exploration and discovery. These functionalities along with GeneDive's applicability for precision medicine, bringing the knowledge contained in biomedical literature to bear on particular clinical situations and improving patient care, are illustrated through detailed use cases.

CONCLUSION

GeneDive is a comprehensive, broad-use biological interactions browser. The GeneDive application and information about its underlying system architecture are available at http://www.genedive.net. GeneDive Docker image is also available for download at this URL, allowing users to (1) import their own interaction data securely and privately; and (2) generate and test hypotheses across their own and other datasets.

摘要

背景

理解基因、药物和疾病状态之间的关系是药物基因组学的核心。在医学文献中识别这些关系的两种主要方法是:人类专家主导的手动策展工作,以及基于现代数据挖掘的自动化方法。前者生成少量高质量数据,后者提供大量混合质量数据。算法提取的关系通常伴随着支持证据,例如置信分数、来源文章和文章的周围上下文(摘录),这些可以用作数据质量指标。需要有工具可以利用这些质量指标来帮助用户访问更大和高质量的数据。

方法

我们介绍了 GeneDive,这是一款面向药物基因组学研究人员和精准医学从业者的网络应用程序,可轻松访问和使用基因、疾病和药物相互作用数据。GeneDive 的设计旨在满足三个关键目标:(1)提供功能来解决信息过载问题并促进支持证据的轻松吸收,(2)支持纵向和探索性研究调查,(3)提供用户提供的交互数据的集成,而无需数据共享。

结果

GeneDive 提供了多种搜索模式、可视化效果和其他功能,可指导用户高效地获取感兴趣的信息。为了促进探索性研究,GeneDive 使每个交互的支持证据和上下文都易于获取,并允许用户根据自己的风险承受水平控制数据质量阈值。交互式搜索-可视化循环使疾病、基因和药物之间的关系发现成为可能,这些关系在文献中可能没有明确描述,但从源医学语料库和推理中涌现出来。利用用户数据的能力,无论是与 GeneDive 本机数据集结合使用还是单独使用,都可以促进更丰富的数据驱动探索和发现。这些功能以及 GeneDive 在精准医学中的应用,即将生物医学文献中的知识应用于特定临床情况并改善患者护理,通过详细的用例进行了说明。

结论

GeneDive 是一个全面的、广泛使用的生物相互作用浏览器。GeneDive 应用程序及其底层系统架构的信息可在 http://www.genedive.net 上获得。GeneDive Docker 映像也可在此 URL 下载,允许用户(1)安全且私密地导入自己的交互数据;(2)在自己和其他数据集上生成和测试假设。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Towards human-computer synergetic analysis of large-scale biological data.迈向大规模生物数据的人机协同分析。
BMC Bioinformatics. 2013;14 Suppl 14(Suppl 14):S10. doi: 10.1186/1471-2105-14-S14-S10. Epub 2013 Oct 9.

本文引用的文献

1
The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.ACE2 缺乏与 SARS-CoV-2 感染之间的关键联系。
Eur J Intern Med. 2020 Jun;76:14-20. doi: 10.1016/j.ejim.2020.04.037. Epub 2020 Apr 20.
3
Type 1 diabetes mellitus.1 型糖尿病。
Nat Rev Dis Primers. 2017 Mar 30;3:17016. doi: 10.1038/nrdp.2017.16.
7
Type 2 diabetes mellitus.2 型糖尿病。
Nat Rev Dis Primers. 2015 Jul 23;1:15019. doi: 10.1038/nrdp.2015.19.
8
Pharmacogenomics in the clinic.临床中的药物基因组学。
Nature. 2015 Oct 15;526(7573):343-50. doi: 10.1038/nature15817.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验