Lim Eugene J, Ober Thomas J, Edd Jon F, Desai Salil P, Neal Douglas, Bong Ki Wan, Doyle Patrick S, McKinley Gareth H, Toner Mehmet
1] Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3].
1] Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2].
Nat Commun. 2014 Jun 18;5:4120. doi: 10.1038/ncomms5120.
Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min(-1) and 130 m s(-1). This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.
在许多生物医学、环境和工业应用中,以高通量对大量流体中的颗粒进行可控操作至关重要。一种有前景的方法是使用微流控技术,该技术依靠流体惯性或弹性来驱动颗粒在微通道中横向迁移至稳定平衡位置。在此,我们报告一种流体动力学方法,该方法能够在极高流速下在微通道中对珠子、哺乳动物细胞和各向异性水凝胶颗粒进行确定性聚焦。我们表明,添加微摩尔浓度的透明质酸后,所产生的流体粘弹性可用于在雷诺数高达Re≈10,000时控制颗粒的聚焦位置,相应的流速和颗粒速度分别高达50 ml min(-1)和130 m s(-1)。本研究探索了一种以前未达到的惯性弹性流体流动状态,并证明了在迄今所达到的最高流速下对生物颗粒进行聚焦。