Suppr超能文献

微通道中生物粒子的高通量惯性弹性聚焦

Inertio-elastic focusing of bioparticles in microchannels at high throughput.

作者信息

Lim Eugene J, Ober Thomas J, Edd Jon F, Desai Salil P, Neal Douglas, Bong Ki Wan, Doyle Patrick S, McKinley Gareth H, Toner Mehmet

机构信息

1] Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA [2] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3].

1] Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2].

出版信息

Nat Commun. 2014 Jun 18;5:4120. doi: 10.1038/ncomms5120.

Abstract

Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min(-1) and 130 m s(-1). This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.

摘要

在许多生物医学、环境和工业应用中,以高通量对大量流体中的颗粒进行可控操作至关重要。一种有前景的方法是使用微流控技术,该技术依靠流体惯性或弹性来驱动颗粒在微通道中横向迁移至稳定平衡位置。在此,我们报告一种流体动力学方法,该方法能够在极高流速下在微通道中对珠子、哺乳动物细胞和各向异性水凝胶颗粒进行确定性聚焦。我们表明,添加微摩尔浓度的透明质酸后,所产生的流体粘弹性可用于在雷诺数高达Re≈10,000时控制颗粒的聚焦位置,相应的流速和颗粒速度分别高达50 ml min(-1)和130 m s(-1)。本研究探索了一种以前未达到的惯性弹性流体流动状态,并证明了在迄今所达到的最高流速下对生物颗粒进行聚焦。

相似文献

5
Oscillatory inertial focusing in infinite microchannels.无限微通道中的振荡惯性聚焦。
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7682-7687. doi: 10.1073/pnas.1721420115. Epub 2018 Jul 10.

引用本文的文献

3
Sheathless inertial particle focusing methods within microfluidic devices: a review.微流控装置内的无鞘惯性粒子聚焦方法:综述
Front Bioeng Biotechnol. 2024 Jan 8;11:1331968. doi: 10.3389/fbioe.2023.1331968. eCollection 2023.
4
An On-Chip Viscoelasticity Sensor for Biological Fluids.一种用于生物流体的片上粘弹性传感器。
Cyborg Bionic Syst. 2023;4:0006. doi: 10.34133/cbsystems.0006. Epub 2023 Jan 10.
5
Rapid prototyping for high-pressure microfluidics.高压微流控的快速成型。
Sci Rep. 2023 Jan 22;13(1):1232. doi: 10.1038/s41598-023-28495-2.

本文引用的文献

4
Elasto-inertial turbulence.弹性惯性湍流。
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10557-62. doi: 10.1073/pnas.1219666110. Epub 2013 Jun 11.
5
Impact of shale gas development on regional water quality.页岩气开发对区域水质的影响。
Science. 2013 May 17;340(6134):1235009. doi: 10.1126/science.1235009.
9
High throughput-per-footprint inertial focusing.高通量足迹惯性聚焦。
Small. 2013 Aug 26;9(16):2764-73, 2828. doi: 10.1002/smll.201201770. Epub 2013 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验