Perticaroli Stefania, Nickels Jonathan D, Ehlers Georg, Sokolov Alexei P
Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Chemical and Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
Biophys J. 2014 Jun 17;106(12):2667-74. doi: 10.1016/j.bpj.2014.05.009.
Complementary neutron- and light-scattering results on nine proteins and amino acids reveal the role of rigidity and secondary structure in determining the time- and lengthscales of low-frequency collective vibrational dynamics in proteins. These dynamics manifest in a spectral feature, known as the boson peak (BP), which is common to all disordered materials. We demonstrate that BP position scales systematically with structural motifs, reflecting local rigidity: disordered proteins appear softer than α-helical proteins; which are softer than β-sheet proteins. Our analysis also reveals a universal spectral shape of the BP in proteins and amino acid mixtures; superimposable on the shape observed in typical glasses. Uniformity in the underlying physical mechanism, independent of the specific chemical composition, connects the BP vibrations to nanometer-scale heterogeneities, providing an experimental benchmark for coarse-grained simulations, structure/rigidity relationships, and engineering of proteins for novel applications.
对九种蛋白质和氨基酸进行的中子散射和光散射互补结果揭示了刚性和二级结构在决定蛋白质低频集体振动动力学的时间和长度尺度方面的作用。这些动力学表现为一种光谱特征,称为玻色子峰(BP),这是所有无序材料共有的特征。我们证明,BP位置随结构基序系统地变化,反映了局部刚性:无序蛋白质比α螺旋蛋白质更软;α螺旋蛋白质比β折叠蛋白质更软。我们的分析还揭示了蛋白质和氨基酸混合物中BP的通用光谱形状;可叠加在典型玻璃中观察到的形状上。潜在物理机制的一致性,独立于特定的化学成分,将BP振动与纳米尺度的不均匀性联系起来,为粗粒度模拟、结构/刚性关系以及新型应用的蛋白质工程提供了实验基准。