Suppr超能文献

通过改变盐桥密度来控制通过结构柔性控制酶的底物特异性。

Controlling the Substrate Specificity of an Enzyme through Structural Flexibility by Varying the Salt-Bridge Density.

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Molecules. 2021 Sep 20;26(18):5693. doi: 10.3390/molecules26185693.

Abstract

Many enzymes, particularly in one single family, with highly conserved structures and folds exhibit rather distinct substrate specificities. The underlying mechanism remains elusive, the resolution of which is of great importance for biochemistry, biophysics, and bioengineering. Here, we performed a neutron scattering experiment and molecular dynamics (MD) simulations on two structurally similar CYP450 proteins; CYP101 primarily catalyzes one type of ligands, then CYP2C9 can catalyze a large range of substrates. We demonstrated that it is the high density of salt bridges in CYP101 that reduces its structural flexibility, which controls the ligand access channel and the fluctuation of the catalytic pocket, thus restricting its selection on substrates. Moreover, we performed MD simulations on 146 different kinds of CYP450 proteins, spanning distinct biological categories including Fungi, Archaea, Bacteria, Protista, Animalia, and Plantae, and found the above mechanism generally valid. We demonstrated that, by fine changes of chemistry (salt-bridge density), the CYP450 superfamily can vary the structural flexibility of its member proteins among different biological categories, and thus differentiate their substrate specificities to meet the specific biological needs. As this mechanism is well-controllable and easy to be implemented, we expect it to be generally applicable in future enzymatic engineering to develop proteins of desired substrate specificities.

摘要

许多酶,尤其是单一酶家族中的酶,具有高度保守的结构和折叠,表现出相当独特的底物特异性。其潜在机制仍难以捉摸,而解决这一问题对于生物化学、生物物理学和生物工程具有重要意义。在这里,我们对两种结构相似的 CYP450 蛋白进行了中子散射实验和分子动力学(MD)模拟;CYP101 主要催化一种配体,而 CYP2C9 可以催化广泛的底物。我们证明,CYP101 中高密度的盐桥降低了其结构灵活性,从而控制了配体进入通道和催化口袋的波动,从而限制了其对底物的选择。此外,我们对 146 种不同类型的 CYP450 蛋白进行了 MD 模拟,涵盖了不同的生物类别,包括真菌、古菌、细菌、原生动物、动物和植物,并发现上述机制普遍适用。我们证明,通过精细改变化学性质(盐桥密度),CYP450 超家族可以在不同的生物类别中改变其成员蛋白的结构灵活性,从而区分它们的底物特异性,以满足特定的生物学需求。由于这种机制具有良好的可控性和易于实施性,我们预计它将在未来的酶工程中得到广泛应用,以开发具有所需底物特异性的蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4bd/8470667/6f9def2ee6df/molecules-26-05693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验