Bidart Gonzalo N, Rodríguez-Díaz Jesús, Monedero Vicente, Yebra María J
Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain; Instituto de Investigaciones Biotecnológicas 'Dr. Rodolfo A. Ugalde', Universidad Nacional de San Martín, Buenos Aires, Argentina.
Mol Microbiol. 2014 Aug;93(3):521-38. doi: 10.1111/mmi.12678. Epub 2014 Jul 3.
The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate : sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-β-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes.
益生菌干酪乳杆菌通过使用与双歧杆菌不同的转运系统和代谢途径来分解代谢N-二糖半乳糖(GNB)和N-二糖乳糖(LNB)。干酪乳杆菌含有一个基因簇gnbREFGBCDA,参与GNB、LNB以及N-乙酰半乳糖胺的代谢。磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)中的gnbC(EIIC)或ptsI(酶I)失活会阻止在这三种碳水化合物上生长,这表明它们是由同一PTS(Gnb)进行转运和磷酸化的。对基因敲除突变体的酶活性和生长分析表明,GnbG(磷酸-β-半乳糖苷酶)可水解这两种二糖。然而,GnbF(N-乙酰半乳糖胺-6P脱乙酰酶)和GnbE(半乳糖胺-6P异构酶/脱氨酶)参与GNB的发酵,但不参与LNB的发酵。LNB的利用取决于nagA(N-乙酰葡糖胺-6P脱乙酰酶),这表明GNB和LNB的N-乙酰己糖胺部分遵循不同的分解代谢途径。lacAB突变体(半乳糖-6P异构酶)在GNB和LNB利用方面存在缺陷,这表明它们的半乳糖部分是通过塔格糖-6P途径进行代谢的。转录分析表明,gnb操纵子受转录阻遏物GnbR介导的底物特异性诱导调控,GnbR与一个包含反向重复序列且具有2T/2A保守核心的26 bp DNA区域结合。这些数据首次描述了厚壁菌门中人类母乳寡糖和糖缀合物结构的新型代谢途径。