Suppr超能文献

无骨:自适应运动的软机械学

Bone-free: soft mechanics for adaptive locomotion.

作者信息

Trimmer B A, Lin Huai-ti

机构信息

*Department of Biology, School of Arts and Sciences, Tufts University, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA; Howard Hughes Medical Institute, Janelia Farm, Ashburn, VA, USA

*Department of Biology, School of Arts and Sciences, Tufts University, 200 Boston Avenue, Suite 2600, Medford, MA 02155, USA; Howard Hughes Medical Institute, Janelia Farm, Ashburn, VA, USA.

出版信息

Integr Comp Biol. 2014 Dec;54(6):1122-35. doi: 10.1093/icb/icu076. Epub 2014 Jun 18.

Abstract

Muscular hydrostats (such as mollusks), and fluid-filled animals (such as annelids), can exploit their constant-volume tissues to transfer forces and displacements in predictable ways, much as articulated animals use hinges and levers. Although larval insects contain pressurized fluids, they also have internal air tubes that are compressible and, as a result, they have more uncontrolled degrees of freedom. Therefore, the mechanisms by which larval insects control their movements are expected to reveal useful strategies for designing soft biomimetic robots. Using caterpillars as a tractable model system, it is now possible to identify the biomechanical and neural strategies for controlling movements in such highly deformable animals. For example, the tobacco hornworm, Manduca sexta, can stiffen its body by increasing muscular tension (and therefore body pressure) but the internal cavity (hemocoel) is not iso-barometric, nor is pressure used to directly control the movements of its limbs. Instead, fluid and tissues flow within the hemocoel and the body is soft and flexible to conform to the substrate. Even the gut contributes to the biomechanics of locomotion; it is decoupled from the movements of the body wall and slides forward within the body cavity at the start of each step. During crawling the body is kept in tension for part of the stride and compressive forces are exerted on the substrate along the axis of the caterpillar, thereby using the environment as a skeleton. The timing of muscular activity suggests that crawling is coordinated by proleg-retractor motoneurons and that the large segmental muscles produce anterograde waves of lifting that do not require precise timing. This strategy produces a robust form of locomotion in which the kinematics changes little with orientation. In different species of caterpillar, the presence of prolegs on particular body segments is related to alternative kinematics such as "inching." This suggests a mechanism for the evolution of different gaits through changes in the usage of prolegs, rather than, through extensive alterations in the motor program controlling the body wall. Some of these findings are being used to design and test novel control-strategies for highly deformable robots. These "softworm" devices are providing new insights into the challenges faced by any soft animal navigating in a terrestrial environment.

摘要

肌肉流体静力骨骼(如软体动物)和充满液体的动物(如环节动物),可以利用其体积恒定的组织以可预测的方式传递力和位移,这与有关节的动物利用铰链和杠杆的方式非常相似。虽然幼虫昆虫体内含有加压液体,但它们也有可压缩的内部气管,因此,它们有更多不受控制的自由度。因此,幼虫昆虫控制其运动的机制有望揭示设计柔软仿生机器人的有用策略。以毛虫作为一个易于处理的模型系统,现在有可能识别出在这种高度可变形动物中控制运动的生物力学和神经策略。例如,烟草天蛾,即烟草天蛾,可通过增加肌肉张力(进而增加身体压力)来使身体变硬,但内部腔体(血腔)并非等压的,压力也未被用于直接控制其肢体的运动。相反,液体和组织在血腔内流动,身体柔软且灵活,以适应基质。甚至肠道也有助于运动的生物力学;它与体壁的运动解耦,并在每一步开始时在体腔内向前滑动。在爬行过程中,身体在步幅的一部分时间内保持紧张状态,压缩力沿着毛虫的轴线施加在基质上,从而将环境用作骨架。肌肉活动的时间表明,爬行是由腹足回缩运动神经元协调的,并且大的节段性肌肉产生向前的提升波,这些波不需要精确的时间安排。这种策略产生了一种强大的运动形式,其中运动学随方向的变化很小。在不同种类的毛虫中,特定身体节段上腹足的存在与诸如“蠕动”等不同的运动学有关。这表明了一种通过腹足使用方式的变化来进化不同步态的机制,而不是通过控制体壁的运动程序的广泛改变。其中一些发现正被用于设计和测试高度可变形机器人的新型控制策略。这些“软虫”装置正在为任何在陆地环境中导航的软体动物所面临的挑战提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验