Culha Utku, Demir Sinan O, Trimpe Sebastian, Sitti Metin
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Intelligent Control Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Robot Sci Syst. 2020;2020. doi: 10.15607/RSS.2020.XVI.070.
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can access confined spaces in the human body. However, due to highly nonlinear soft continuum deformation kinematics, inherent stochastic variability during fabrication at the small scale, and lack of accurate models, the conventional control methods cannot be easily applied. Adaptivity of robot control is additionally crucial for medical operations, as operation environments show large variability, and robot materials may degrade or change over time, which would have deteriorating effects on the robot motion and task performance. Therefore, we propose using a probabilistic learning approach for millimeter-scale magnetic walking soft robots using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme to find controller parameters while optimizing the stride length performance of the walking soft millirobot robot within a small number of physical experiments. We demonstrate adaptation to fabrication variabilities in three different robots and to walking surfaces with different roughness. We also show an improvement in the learning performance by transferring the learning results of one robot to the others as prior information.
无系绳小型软机器人在微创手术、靶向药物递送和生物工程应用中具有广阔的应用前景,因为它们能够进入人体的受限空间。然而,由于高度非线性的软连续体变形运动学、小尺度制造过程中固有的随机可变性以及缺乏精确模型,传统的控制方法难以轻易应用。机器人控制的适应性对于医疗操作也至关重要,因为操作环境变化很大,并且机器人材料可能会随着时间的推移而降解或变化,这会对机器人的运动和任务性能产生不利影响。因此,我们提出使用贝叶斯优化(BO)和高斯过程(GPs)的概率学习方法来控制毫米级磁性行走软机器人。我们的方法提供了一种数据高效的学习方案,在少量物理实验中优化行走软微型机器人的步长性能的同时找到控制器参数。我们展示了在三个不同机器人中对制造可变性的适应性以及对不同粗糙度行走表面的适应性。我们还通过将一个机器人的学习结果作为先验信息转移到其他机器人上,展示了学习性能的提高。