Suppr超能文献

心肺压力反射刺激增强清醒犬的心室收缩力:一项数学分析研究。

Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study.

作者信息

Sala-Mercado Javier A, Moslehpour Mohsen, Hammond Robert L, Ichinose Masashi, Chen Xiaoxiao, Evan Sell, O'Leary Donal S, Mukkamala Ramakrishna

机构信息

Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan; and.

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2014 Aug 15;307(4):R455-64. doi: 10.1152/ajpregu.00510.2013. Epub 2014 Jun 18.

Abstract

The cardiopulmonary baroreflex responds to an increase in central venous pressure (CVP) by decreasing total peripheral resistance and increasing heart rate (HR) in dogs. However, the direction of ventricular contractility change is not well understood. The aim was to elucidate the cardiopulmonary baroreflex control of ventricular contractility during normal physiological conditions via a mathematical analysis. Spontaneous beat-to-beat fluctuations in maximal ventricular elastance (Emax), which is perhaps the best available index of ventricular contractility, CVP, arterial blood pressure (ABP), and HR were measured from awake dogs at rest before and after β-adrenergic receptor blockade. An autoregressive exogenous input model was employed to jointly identify the three causal transfer functions relating beat-to-beat fluctuations in CVP to Emax (CVP → Emax), which characterizes the cardiopulmonary baroreflex control of ventricular contractility, ABP to Emax, which characterizes the arterial baroreflex control of ventricular contractility, and HR to Emax, which characterizes the force-frequency relation. The CVP → Emax transfer function showed a static gain of 0.037 ± 0.010 ml(-1) (different from zero; P < 0.05) and an overall time constant of 3.2 ± 1.2 s. Hence, Emax would increase and reach steady state in ∼16 s in response to a step increase in CVP, without any change to ABP or HR, due to the cardiopulmonary baroreflex. Following β-adrenergic receptor blockade, the CVP → Emax transfer function showed a static gain of 0.0007 ± 0.0113 ml(-1) (different from control; P < 0.10). Hence, Emax would change little in steady state in response to a step increase in CVP. Stimulation of the cardiopulmonary baroreflex increases ventricular contractility through β-adrenergic receptor system mediation.

摘要

在犬类中,心肺压力反射通过降低总外周阻力和增加心率(HR)来应对中心静脉压(CVP)的升高。然而,心室收缩性变化的方向尚未完全明确。本研究旨在通过数学分析阐明正常生理条件下心肺压力反射对心室收缩性的控制。在β-肾上腺素能受体阻断前后,测量清醒静息犬的最大心室弹性(Emax,这可能是衡量心室收缩性的最佳指标)、CVP、动脉血压(ABP)和HR的逐搏自发波动。采用自回归外生输入模型共同识别三个因果传递函数,分别为CVP逐搏波动与Emax之间的函数(CVP→Emax),其表征心肺压力反射对心室收缩性的控制;ABP与Emax之间的函数,其表征动脉压力反射对心室收缩性的控制;以及HR与Emax之间的函数,其表征力-频率关系。CVP→Emax传递函数的静态增益为0.037±0.010 ml⁻¹(与零不同;P<0.05),总时间常数为3.2±1.2 s。因此,由于心肺压力反射,CVP的阶跃增加会使Emax在约16 s内增加并达到稳态,而ABP或HR无任何变化。β-肾上腺素能受体阻断后,CVP→Emax传递函数的静态增益为0.0007±0.0113 ml⁻¹(与对照组不同;P<0.10)。因此,CVP的阶跃增加时,Emax在稳态下变化很小。心肺压力反射的刺激通过β-肾上腺素能受体系统介导增加心室收缩性。

相似文献

1
Stimulation of the cardiopulmonary baroreflex enhances ventricular contractility in awake dogs: a mathematical analysis study.
Am J Physiol Regul Integr Comp Physiol. 2014 Aug 15;307(4):R455-64. doi: 10.1152/ajpregu.00510.2013. Epub 2014 Jun 18.
2
Pilot canine investigation of the cardiopulmonary baroreflex control of ventricular contractility.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1852-5. doi: 10.1109/IEMBS.2009.5332622.
3
Dynamic control of maximal ventricular elastance via the baroreflex and force-frequency relation in awake dogs before and after pacing-induced heart failure.
Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H62-9. doi: 10.1152/ajpheart.00922.2009. Epub 2010 Apr 30.
4
Estimation of the total peripheral resistance baroreflex impulse response from spontaneous hemodynamic variability.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H293-301. doi: 10.1152/ajpheart.00852.2007. Epub 2007 Nov 2.
6
Dynamic control of maximal ventricular elastance in conscious dogs before and after pacing-induced heart failure.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5328-31. doi: 10.1109/IEMBS.2009.5332687.
7
Cardiopulmonary baroreceptors modulate carotid baroreflex control of heart rate during dynamic exercise in humans.
Am J Physiol. 1995 Apr;268(4 Pt 2):H1567-76. doi: 10.1152/ajpheart.1995.268.4.H1567.
9
Estimation of arterial and cardiopulmonary total peripheral resistance baroreflex gain values: validation by chronic arterial baroreceptor denervation.
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1830-6. doi: 10.1152/ajpheart.00898.2005. Epub 2005 Nov 23.

引用本文的文献

1
A cross-species validation of single-beat metrics of cardiac contractility.
J Physiol. 2022 Nov;600(22):4779-4806. doi: 10.1113/JP283319. Epub 2022 Oct 5.
5
Effects of Respiratory Training on Heart Rate Variability and Baroreflex Sensitivity in Individuals With Chronic Spinal Cord Injury.
Arch Phys Med Rehabil. 2018 Mar;99(3):423-432. doi: 10.1016/j.apmr.2017.06.033. Epub 2017 Aug 9.
6
Nonlinear identification of the total baroreflex arc: chronic hypertension model.
Am J Physiol Regul Integr Comp Physiol. 2016 May 1;310(9):R819-27. doi: 10.1152/ajpregu.00424.2015. Epub 2016 Jan 20.

本文引用的文献

1
Dynamic control of maximal ventricular elastance via the baroreflex and force-frequency relation in awake dogs before and after pacing-induced heart failure.
Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H62-9. doi: 10.1152/ajpheart.00922.2009. Epub 2010 Apr 30.
2
RT variability unrelated to heart period and respiration progressively increases during graded head-up tilt.
Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1406-14. doi: 10.1152/ajpheart.01206.2009. Epub 2010 Feb 12.
3
Pilot canine investigation of the cardiopulmonary baroreflex control of ventricular contractility.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1852-5. doi: 10.1109/IEMBS.2009.5332622.
4
Responses of cardiac sympathetic nerve activity to changes in circulating volume differ in normal and heart failure sheep.
Am J Physiol Regul Integr Comp Physiol. 2008 Sep;295(3):R719-26. doi: 10.1152/ajpregu.00824.2007. Epub 2008 Jul 16.
5
Heart failure attenuates muscle metaboreflex control of ventricular contractility during dynamic exercise.
Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2159-66. doi: 10.1152/ajpheart.01240.2006. Epub 2006 Dec 22.
6
The influence of venous filling upon the rate of the heart.
J Physiol. 1915 Dec 24;50(2):65-84. doi: 10.1113/jphysiol.1915.sp001736.
7
Estimation of arterial and cardiopulmonary total peripheral resistance baroreflex gain values: validation by chronic arterial baroreceptor denervation.
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1830-6. doi: 10.1152/ajpheart.00898.2005. Epub 2005 Nov 23.
8
System identification: a multi-signal approach for probing neural cardiovascular regulation.
Physiol Meas. 2005 Jun;26(3):R41-71. doi: 10.1088/0967-3334/26/3/R01. Epub 2005 Feb 1.
9
Exploring directionality in spontaneous heart period and systolic pressure variability interactions in humans: implications in the evaluation of baroreflex gain.
Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1777-85. doi: 10.1152/ajpheart.00594.2004. Epub 2004 Dec 16.
10
Effects of chronic baroreceptor unloading on blood pressure in the dog.
Am J Physiol Regul Integr Comp Physiol. 2005 Apr;288(4):R863-71. doi: 10.1152/ajpregu.00489.2004. Epub 2004 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验