Birrane Gabriel, Bhyravbhatla Balaji, Navia Manuel A
Division of Experimental Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts 02215, United States.
Xtal BioStructures , 12 Michigan Drive, Natick, Massachusetts 01760, United States.
ACS Med Chem Lett. 2014 Apr 10;5(6):706-10. doi: 10.1021/ml500101z. eCollection 2014 Jun 12.
Protease mediated peptide synthesis (PMPS) was first described in the 1930s but remains underexploited today. In most PMPS, the reaction equilibrium is shifted toward synthesis by the aqueous insolubility of product generated. Substrates and proteases are selected by trial and error, yields are modest, and reaction times are slow. Once implemented, however, PMPS reactions can be simple, environmentally benign, and readily scalable to a commercial level. We examined the PMPS of a precursor of the artificial sweetener aspartame, a multiton peptide synthesis catalyzed by the enzyme thermolysin. X-ray structures of thermolysin in complex with aspartame substrates separately, and after PMPS in a crystal, rationalize the reaction's substrate preferences and reveal an unexpected form of substrate inhibition that explains its sluggishness. Structure guided optimization of this and other PMPS reactions could expand the economic viability of commercial peptides beyond current high-potency, low-volume therapeutics, with substantial green chemistry advantages.
蛋白酶介导的肽合成(PMPS)最早在20世纪30年代被描述,但如今仍未得到充分利用。在大多数PMPS中,反应平衡因生成产物的水不溶性而向合成方向移动。底物和蛋白酶通过反复试验来选择,产率适中,反应时间缓慢。然而,一旦实施,PMPS反应可以很简单,对环境无害,并且很容易扩大到商业规模。我们研究了人工甜味剂阿斯巴甜前体的PMPS,这是一种由嗜热菌蛋白酶催化的多吨级肽合成。嗜热菌蛋白酶与阿斯巴甜底物分别形成复合物的X射线结构,以及在晶体中进行PMPS后的结构,解释了该反应的底物偏好,并揭示了一种意想不到的底物抑制形式,这解释了其反应迟缓的原因。这种以及其他PMPS反应的结构导向优化可以扩大商业肽的经济可行性,超越目前高效、小批量的治疗药物,具有显著的绿色化学优势。