Deitch Jeffrey S, Alexander Guillermo M, Bensinger Andrew, Yang Steven, Jiang Juliann T, Heiman-Patterson Terry D
Department of Neurology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America.
Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2014 Jun 19;9(6):e99879. doi: 10.1371/journal.pone.0099879. eCollection 2014.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS) with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1). There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg) mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE) G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.
肌萎缩侧索硬化症(ALS)是一种运动神经元的进行性神经退行性疾病。虽然大多数ALS病例是散发性的,但10%是家族性的(FALS),其中20%的FALS是由编码铜/锌超氧化物歧化酶(SOD1)的基因突变引起的。散发性ALS和FALS都存在变异性,即使在同一家族中,一些具有相同突变的兄弟姐妹也不会表现出疾病。一种含有25个突变型人类SOD1基因拷贝的FALS转基因(Tg)小鼠模型表现出与ALS患者相似的运动神经元病理和进行性肌无力,约130天时死亡。这些转基因小鼠的症状发作和存活时间与突变基因的拷贝数直接相关。我们报告了一种极低表达(VLE)的G93A SOD1 Tg小鼠的表型,该小鼠仅携带4个突变型G93A SOD1基因拷贝。虽然肌无力可在9个月时开始,但18个月及以上的小鼠中只有74%表现出疾病。与野生型小鼠相比,VLE小鼠的运动神经元减少,TDP - 43的胞质易位增加。与总是发展为运动肌无力并导致死亡的标准G93A SOD1 Tg小鼠不同,并非所有VLE动物都表现出临床疾病或寿命缩短。事实上,约20%的24个月以上小鼠没有运动症状,22个月以上的VLE小鼠中只有18%达到终末期。鉴于临床表型的可变外显率、延长的生存期以及运动神经元的长期丧失,VLE小鼠提供了一种紧密模拟人类ALS的新工具。该工具将允许对病理事件随时间的变化进行研究,以及对可能不是致病因素,但可加重或加速运动神经元疾病的遗传和环境修饰因素进行研究。