Suppr超能文献

揭示大脑皮层对有声读物故事的脑磁图反应。

Uncovering cortical MEG responses to listened audiobook stories.

作者信息

Koskinen M, Seppä M

机构信息

Brain Research Unit at AMI Centre, and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.O. Box 13000, FI-00076 Aalto, Finland.

Brain Research Unit at AMI Centre, and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, P.O. Box 13000, FI-00076 Aalto, Finland.

出版信息

Neuroimage. 2014 Oct 15;100:263-70. doi: 10.1016/j.neuroimage.2014.06.018. Epub 2014 Jun 17.

Abstract

Naturalistic stimuli, such as normal speech and narratives, are opening up intriguing prospects in neuroscience, especially when merging neuroimaging with machine learning methodology. Here we propose a task-optimized spatial filtering strategy for uncovering individual magnetoencephalographic (MEG) responses to audiobook stories. Ten subjects listened to 1-h-long recording once, as well as to 48 repetitions of a 1-min-long speech passage. Employing response replicability as statistical validity and utilizing unsupervised learning methods, we trained spatial filters that were able to generalize over datasets of an individual. For this blind-signal-separation (BSS) task, we derived a version of multi-set similarity-constrained canonical correlation analysis (SimCCA) that theoretically provides maximal signal-to-noise ratio (SNR) in this setting. Irrespective of significant noise in unaveraged MEG traces, the method successfully uncovered feasible time courses up to ~120 Hz, with the most prominent signals below 20 Hz. Individual trial-to-trial correlations of such time courses reached the level of 0.55 (median 0.33 in the group) at ~0.5 Hz, with considerable variation between subjects. By this filtering, the SNR increased up to 20 times. In comparison, independent component analysis (ICA) or principal component analysis (PCA) did not improve SNR notably. The validity of the extracted brain signals was further assessed by inspecting their associations with the stimulus, as well as by mapping the contributing cortical signal sources. The results indicate that the proposed methodology effectively reduces noise in MEG recordings to that extent that brain responses can be seen to nonrecurring audiobook stories. The study paves the way for applications aiming at accurately modeling the stimulus-response-relationship by tackling the response variability, as well as for real-time monitoring of brain signals of individuals in naturalistic experimental conditions.

摘要

自然主义刺激,如正常语音和叙述,正在神经科学领域开启引人入胜的前景,尤其是在将神经成像与机器学习方法相结合时。在此,我们提出一种任务优化的空间滤波策略,用于揭示个体对有声读物故事的脑磁图(MEG)反应。10名受试者听了一次1小时的录音,以及一段1分钟长的语音段落的48次重复。以反应可重复性作为统计有效性,并利用无监督学习方法,我们训练了能够在个体数据集上进行泛化的空间滤波器。对于这个盲信号分离(BSS)任务,我们推导了一个多集相似性约束典型相关分析(SimCCA)版本,理论上在此设置中提供最大信噪比(SNR)。无论未平均的MEG迹线中存在显著噪声,该方法都成功地揭示了高达约120Hz的可行时间进程,最突出的信号在20Hz以下。这种时间进程的个体试验间相关性在约0.5Hz时达到0.55(组中位数为0.33),受试者之间存在相当大的差异。通过这种滤波,SNR提高了20倍。相比之下,独立成分分析(ICA)或主成分分析(PCA)并未显著提高SNR。通过检查提取的脑信号与刺激的关联,以及绘制贡献皮层信号源,进一步评估了提取的脑信号的有效性。结果表明,所提出的方法有效地将MEG记录中的噪声降低到可以看到对非重复有声读物故事的脑反应的程度。该研究为旨在通过解决反应变异性来准确建模刺激-反应关系的应用,以及在自然主义实验条件下对个体脑信号进行实时监测铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验