Brain Research Unit, Low Temperature Laboratory, Aalto University School of Science, PO Box 15100, 00076 Aalto, Finland.
Brain Research Unit, Low Temperature Laboratory, Aalto University School of Science, PO Box 15100, 00076 Aalto, Finland.
Neuroimage. 2014 Feb 1;86:480-91. doi: 10.1016/j.neuroimage.2013.10.032. Epub 2013 Oct 31.
We developed a data-driven method to spatiotemporally and spectrally characterize the dynamics of brain oscillations in resting-state magnetoencephalography (MEG) data. The method, called envelope spatial Fourier independent component analysis (eSFICA), maximizes the spatial and spectral sparseness of Fourier energies of a cortically constrained source current estimate. We compared this method using a simulated data set against 5 other variants of independent component analysis and found that eSFICA performed on par with its temporal variant, eTFICA, and better than other ICA variants, in characterizing dynamics at time scales of the order of minutes. We then applied eSFICA to real MEG data obtained from 9 subjects during rest. The method identified several networks showing within- and cross-frequency inter-areal functional connectivity profiles which resemble previously reported resting-state networks, such as the bilateral sensorimotor network at ~20Hz, the lateral and medial parieto-occipital sources at ~10Hz, a subset of the default-mode network at ~8 and ~15Hz, and lateralized temporal lobe sources at ~8Hz. Finally, we interpreted the estimated networks as spatiospectral filters and applied the filters to obtain the dynamics during a natural stimulus sequence presented to the same 9 subjects. We observed occipital alpha modulation to visual stimuli, bilateral rolandic mu modulation to tactile stimuli and video clips of hands, and the temporal lobe network modulation to speech stimuli, but no modulation of the sources in the default-mode network. We conclude that (1) the proposed method robustly detects inter-areal cross-frequency networks at long time scales, (2) the functional relevance of the resting-state networks can be probed by applying the obtained spatiospectral filters to data from measurements with controlled external stimulation.
我们开发了一种数据驱动的方法,用于对静息状态脑磁图 (MEG) 数据中的脑振荡的时空和光谱特征进行分析。该方法称为包络空间傅里叶独立成分分析 (eSFICA),它最大限度地提高了皮质约束源电流估计的傅里叶能量的空间和光谱稀疏性。我们使用模拟数据集将该方法与其他 5 种独立成分分析变体进行了比较,发现 eSFICA 在表征分钟量级时间尺度的动力学方面与它的时间变体 eTFICA 表现相当,并且优于其他 ICA 变体。然后,我们将 eSFICA 应用于 9 名受试者在休息期间获得的真实 MEG 数据。该方法识别出了几个网络,这些网络显示了跨区域的功能连接模式,这些模式类似于先前报道的静息状态网络,例如双侧感觉运动网络(约 20Hz)、外侧和内侧顶枕叶源(约 10Hz)、默认模式网络的子集(约 8Hz 和 15Hz)以及侧化颞叶源(约 8Hz)。最后,我们将估计的网络解释为空间-光谱滤波器,并应用这些滤波器来获得相同的 9 名受试者在自然刺激序列期间的动力学。我们观察到视觉刺激引起的枕叶 alpha 调制、触觉刺激和手的视频剪辑引起的双侧 Rolandic mu 调制以及语音刺激引起的颞叶网络调制,但默认模式网络的源没有调制。我们得出结论:(1)该方法能够稳健地检测长时间尺度上的跨区域跨频网络;(2)通过将获得的空间-光谱滤波器应用于受控外部刺激测量数据,可以探测静息状态网络的功能相关性。