Langner Robert, Rottschy Claudia, Laird Angela R, Fox Peter T, Eickhoff Simon B
Institute of Clinical Neuroscience & Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
Neuroimage. 2014 Oct 1;99:559-70. doi: 10.1016/j.neuroimage.2014.06.007. Epub 2014 Jun 16.
Co-activation of distinct brain regions is a measure of functional interaction, or connectivity, between those regions. The co-activation pattern of a given region can be investigated using seed-based activation likelihood estimation meta-analysis of functional neuroimaging data stored in databases such as BrainMap. This method reveals inter-regional functional connectivity by determining brain regions that are consistently co-activated with a given region of interest (the "seed") across a broad range of experiments. In current implementations of this meta-analytic connectivity modeling (MACM), significant spatial convergence (i.e. consistent co-activation) is distinguished from noise by comparing it against an unbiased null-distribution of random spatial associations between experiments according to which all gray-matter voxels have the same chance of convergence. As the a priori probability of finding activation in different voxels markedly differs across the brain, computing such a quasi-rectangular null-distribution renders the detection of significant convergence more likely in those voxels that are frequently activated. Here, we propose and test a modified MACM approach that takes this activation frequency bias into account. In this new specific co-activation likelihood estimation (SCALE) algorithm, a null-distribution is generated that reflects the base rate of reporting activation in any given voxel and thus equalizes the a priori chance of finding across-study convergence in each voxel of the brain. Using four exemplary seed regions (right visual area V4, left anterior insula, right intraparietal sulcus, and subgenual cingulum), our tests corroborated the enhanced specificity of the modified algorithm, indicating that SCALE may be especially useful for delineating distinct core networks of co-activation.
不同脑区的共同激活是这些脑区之间功能相互作用或连接性的一种度量。可以使用基于种子的激活似然估计元分析来研究给定脑区的共同激活模式,该分析针对存储在诸如BrainMap等数据库中的功能神经影像数据进行。这种方法通过确定在广泛的实验中与给定感兴趣区域(“种子”)持续共同激活的脑区,揭示区域间的功能连接性。在这种元分析连接性建模(MACM)的当前实现中,通过将显著的空间收敛(即一致的共同激活)与实验之间随机空间关联的无偏零分布进行比较,来区分它与噪声,根据该零分布,所有灰质体素具有相同的收敛机会。由于在大脑中不同体素中发现激活的先验概率明显不同,计算这样一个近似矩形的零分布使得在那些频繁激活的体素中更有可能检测到显著的收敛。在这里,我们提出并测试了一种改进的MACM方法,该方法考虑了这种激活频率偏差。在这种新的特定共同激活似然估计(SCALE)算法中,生成了一个零分布,该分布反映了在任何给定体素中报告激活的基础率,从而均衡了在大脑每个体素中发现跨研究收敛的先验机会。使用四个示例性种子区域(右侧视觉区域V4、左侧前脑岛、右侧顶内沟和膝下扣带),我们的测试证实了改进算法的特异性增强,表明SCALE可能对于描绘不同的共同激活核心网络特别有用。