Suppr超能文献

综合预测加工研究:跨认知领域和基于功能磁共振成像的元分析方法。

Comprehensive investigation of predictive processing: A cross- and within-cognitive domains fMRI meta-analytic approach.

机构信息

Padova Neuroscience Center, Padua, Italy.

IRCCS Ospedale San Camillo, Venice, Italy.

出版信息

Hum Brain Mapp. 2024 Aug 15;45(12):e26817. doi: 10.1002/hbm.26817.

Abstract

Predictive processing (PP) stands as a predominant theoretical framework in neuroscience. While some efforts have been made to frame PP within a cognitive domain-general network perspective, suggesting the existence of a "prediction network," these studies have primarily focused on specific cognitive domains or functions. The question of whether a domain-general predictive network that encompasses all well-established cognitive domains exists remains unanswered. The present meta-analysis aims to address this gap by testing the hypothesis that PP relies on a large-scale network spanning across cognitive domains, supporting PP as a unified account toward a more integrated approach to neuroscience. The Activation Likelihood Estimation meta-analytic approach was employed, along with Meta-Analytic Connectivity Mapping, conjunction analysis, and behavioral decoding techniques. The analyses focused on prediction incongruency and prediction congruency, two conditions likely reflective of core phenomena of PP. Additionally, the analysis focused on a prediction phenomena-independent dimension, regardless of prediction incongruency and congruency. These analyses were first applied to each cognitive domain considered (cognitive control, attention, motor, language, social cognition). Then, all cognitive domains were collapsed into a single, cross-domain dimension, encompassing a total of 252 experiments. Results pertaining to prediction incongruency rely on a defined network across cognitive domains, while prediction congruency results exhibited less overall activation and slightly more variability across cognitive domains. The converging patterns of activation across prediction phenomena and cognitive domains highlight the role of several brain hubs unfolding within an organized large-scale network (Dynamic Prediction Network), mainly encompassing bilateral insula, frontal gyri, claustrum, parietal lobules, and temporal gyri. Additionally, the crucial role played at a cross-domain, multimodal level by the anterior insula, as evidenced by the conjunction and Meta-Analytic Connectivity Mapping analyses, places it as the major hub of the Dynamic Prediction Network. Results support the hypothesis that PP relies on a domain-general, large-scale network within whose regions PP units are likely to operate, depending on the context and environmental demands. The wide array of regions within the Dynamic Prediction Network seamlessly integrate context- and stimulus-dependent predictive computations, thereby contributing to the adaptive updating of the brain's models of the inner and external world.

摘要

预测加工(PP)是神经科学中的主要理论框架。虽然已经有一些努力将 PP 框架构建在认知领域一般性网络视角中,提出存在“预测网络”,但这些研究主要集中在特定的认知领域或功能上。是否存在一个涵盖所有既定认知领域的领域一般性预测网络的问题仍然没有答案。本元分析旨在通过检验 PP 依赖于跨越认知领域的大规模网络的假设来解决这一差距,支持 PP 作为一种统一的方法,以更综合的方式接近神经科学。采用激活似然估计元分析方法,同时采用元分析连接映射、联合分析和行为解码技术。分析重点是预测不一致和预测一致这两种情况,这两种情况很可能反映了 PP 的核心现象。此外,分析侧重于与预测不一致和一致无关的预测现象独立维度。这些分析首先应用于每个考虑的认知领域(认知控制、注意力、运动、语言、社会认知)。然后,将所有认知领域合并到一个单一的跨领域维度中,共包含 252 个实验。关于预测不一致的结果依赖于认知领域之间的一个定义网络,而预测一致的结果表现出较少的整体激活和稍微更多的跨认知领域的可变性。预测现象和认知领域之间激活的趋同模式突出了几个大脑枢纽在有组织的大规模网络(动态预测网络)中的作用,主要包括双侧岛叶、额回、屏状核、顶叶叶和颞叶。此外,前岛叶在跨领域、多模态层面上发挥的关键作用,如联合和元分析连接映射分析所示,使其成为动态预测网络的主要枢纽。结果支持 PP 依赖于领域一般性、大规模网络的假设,在该网络中,PP 单元可能根据上下文和环境需求运行。动态预测网络中的广泛区域无缝地整合了上下文和刺激依赖性的预测计算,从而有助于大脑内部和外部世界模型的自适应更新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11339134/b272e24f65b7/HBM-45-e26817-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验