Suppr超能文献

荟萃分析共激活网络的异质性分级概况。

Heterogeneous fractionation profiles of meta-analytic coactivation networks.

作者信息

Laird Angela R, Riedel Michael C, Okoe Mershack, Jianu Radu, Ray Kimberly L, Eickhoff Simon B, Smith Stephen M, Fox Peter T, Sutherland Matthew T

机构信息

Department of Physics, Florida International University, Miami, FL, USA.

Department of Physics, Florida International University, Miami, FL, USA.

出版信息

Neuroimage. 2017 Apr 1;149:424-435. doi: 10.1016/j.neuroimage.2016.12.037. Epub 2017 Feb 20.

Abstract

Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication.

摘要

计算认知神经成像方法可用于描述人类大脑中分布式、功能特化网络的层次组织。为此,我们在BrainMap数据库中对来自10000多个基于任务的实验的坐标激活位置进行了大规模挖掘。通过在广泛的模型阶数(即d = 20 - 300)范围内联合应用独立成分分析(ICA)和元分析连接建模(MACM),识别出元分析共激活网络。然后,我们迭代计算连续模型阶数的成对相关系数,以比较空间网络拓扑结构,最终得出描绘“父”功能脑系统如何分解为组成“子”子网的分级图谱。不同规范网络的分级图谱差异很大:一些在整个模型阶数范围内表现出复杂且广泛地分解为大量子网,而另一些随着模型阶数增加几乎没有分解。应用层次聚类来评估这种异质性,得出三组不同的网络分级图谱:高分、中分和低分。对所得共激活网络进行基于BrainMap的功能解码,揭示了无论分级复杂性如何都存在多领域关联。这些结果并非强调认知 - 运动 - 感知梯度,而是表明叶间连接在功能性脑组织结构中的重要性。我们得出结论,高分网络复杂,由许多反映长程叶间连接的组成子网组成,特别是在额顶叶区域。相比之下,低分网络可能反映了更持久、稳定的网络,这些网络内部更加连贯,叶间通信减少。

相似文献

1
Heterogeneous fractionation profiles of meta-analytic coactivation networks.
Neuroimage. 2017 Apr 1;149:424-435. doi: 10.1016/j.neuroimage.2016.12.037. Epub 2017 Feb 20.
2
Meta-analytic connectivity modeling revisited: controlling for activation base rates.
Neuroimage. 2014 Oct 1;99:559-70. doi: 10.1016/j.neuroimage.2014.06.007. Epub 2014 Jun 16.
3
Different functions in the cingulate cortex, a meta-analytic connectivity modeling study.
Neuroimage. 2011 Jun 15;56(4):2157-72. doi: 10.1016/j.neuroimage.2011.03.066. Epub 2011 Apr 1.
4
Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling.
J Neurosci. 2009 Nov 18;29(46):14496-505. doi: 10.1523/JNEUROSCI.4004-09.2009.
5
Behavioral interpretations of intrinsic connectivity networks.
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.
6
Networks of task co-activations.
Neuroimage. 2013 Oct 15;80:505-14. doi: 10.1016/j.neuroimage.2013.04.073. Epub 2013 Apr 28.
7
Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease.
Neuroimage Clin. 2015 Feb 27;7:640-52. doi: 10.1016/j.nicl.2015.02.018. eCollection 2015.
9
Meta-analytic connectivity modeling of the human superior temporal sulcus.
Brain Struct Funct. 2017 Jan;222(1):267-285. doi: 10.1007/s00429-016-1215-z. Epub 2016 Mar 22.
10
Dissociable meta-analytic brain networks contribute to coordinated emotional processing.
Hum Brain Mapp. 2018 Jun;39(6):2514-2531. doi: 10.1002/hbm.24018. Epub 2018 Feb 26.

引用本文的文献

1
Brain pathology recapitulates physiology: A network meta-analysis.
Commun Biol. 2021 Mar 8;4(1):301. doi: 10.1038/s42003-021-01832-9.
2
The ups and downs of relating nondrug reward activation to substance use risk in adolescents.
Curr Addict Rep. 2020 Sep;7(3):421-429. doi: 10.1007/s40429-020-00327-7. Epub 2020 Aug 7.
3
Intrinsic connectivity networks underlying individual differences in control-averse behavior.
Hum Brain Mapp. 2018 Dec;39(12):4857-4869. doi: 10.1002/hbm.24328. Epub 2018 Aug 29.

本文引用的文献

1
Effects of thresholding on correlation-based image similarity metrics.
Front Neurosci. 2015 Oct 29;9:418. doi: 10.3389/fnins.2015.00418. eCollection 2015.
2
Co-activation based parcellation of the human frontal pole.
Neuroimage. 2015 Dec;123:200-11. doi: 10.1016/j.neuroimage.2015.07.072. Epub 2015 Aug 5.
3
Neural architecture underlying classification of face perception paradigms.
Neuroimage. 2015 Oct 1;119:70-80. doi: 10.1016/j.neuroimage.2015.06.044. Epub 2015 Jun 18.
4
Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM.
Front Hum Neurosci. 2015 May 8;9:259. doi: 10.3389/fnhum.2015.00259. eCollection 2015.
5
Meta-analytic connectivity and behavioral parcellation of the human cerebellum.
Neuroimage. 2015 Aug 15;117:327-42. doi: 10.1016/j.neuroimage.2015.05.008. Epub 2015 May 19.
6
Subspecialization in the human posterior medial cortex.
Neuroimage. 2015 Feb 1;106:55-71. doi: 10.1016/j.neuroimage.2014.11.009. Epub 2014 Nov 8.
7
Functional Segregation of the Human Dorsomedial Prefrontal Cortex.
Cereb Cortex. 2016 Jan;26(1):304-21. doi: 10.1093/cercor/bhu250. Epub 2014 Oct 20.
8
Neural networks related to dysfunctional face processing in autism spectrum disorder.
Brain Struct Funct. 2015 Jul;220(4):2355-71. doi: 10.1007/s00429-014-0791-z. Epub 2014 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验