Suppr超能文献

CD4+ T细胞分化、变异性和可塑性的动态景观呈现:对群体与细胞行为的见解

An animated landscape representation of CD4+ T-cell differentiation, variability, and plasticity: insights into the behavior of populations versus cells.

作者信息

Rebhahn Jonathan A, Deng Nan, Sharma Gaurav, Livingstone Alexandra M, Huang Sui, Mosmann Tim R

机构信息

David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical School, Rochester, NY, USA.

出版信息

Eur J Immunol. 2014 Aug;44(8):2216-29. doi: 10.1002/eji.201444645.

Abstract

Recent advances in understanding CD4(+) T-cell differentiation suggest that previous models of a few distinct, stable effector phenotypes were too simplistic. Although several well-characterized phenotypes are still recognized, some states display plasticity, and intermediate phenotypes exist. As a framework for reexamining these concepts, we use Waddington's landscape paradigm, augmented with explicit consideration of stochastic variations. Our animation program "LAVA" visualizes T-cell differentiation as cells moving across a landscape of hills and valleys, leading to attractor basins representing stable or semistable differentiation states. The model illustrates several principles, including: (i) cell populations may behave more predictably than individual cells; (ii) analogous to reticulate evolution, differentiation may proceed through a network of interconnected states, rather than a single well-defined pathway; (iii) relatively minor changes in the barriers between attractor basins can change the stability or plasticity of a population; (iv) intrapopulation variability of gene expression may be an important regulator of differentiation, rather than inconsequential noise; (v) the behavior of some populations may be defined mainly by the behavior of outlier cells. While not a quantitative representation of actual differentiation, our model is intended to provoke discussion of T-cell differentiation pathways, particularly highlighting a probabilistic view of transitions between states.

摘要

对CD4(+) T细胞分化认识的最新进展表明,以往关于几种不同、稳定效应子表型的模型过于简单化。尽管仍可识别出几种特征明确的表型,但有些状态表现出可塑性,并且存在中间表型。作为重新审视这些概念的一个框架,我们采用了沃丁顿的景观范式,并明确考虑了随机变异。我们的动画程序“LAVA”将T细胞分化直观呈现为细胞在起伏的景观中移动,从而形成代表稳定或半稳定分化状态的吸引盆。该模型阐释了几个原理,包括:(i) 细胞群体的行为可能比单个细胞更具可预测性;(ii) 类似于网状进化,分化可能通过相互连接的状态网络进行,而非单一明确的途径;(iii) 吸引盆之间屏障的相对微小变化可改变群体的稳定性或可塑性;(iv) 群体内基因表达的变异性可能是分化的重要调节因素,而非无关紧要的噪声;(v) 某些群体的行为可能主要由异常细胞的行为所定义。虽然我们的模型并非实际分化的定量表示,但旨在引发对T细胞分化途径的讨论,尤其强调状态间转变的概率观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e70/4350648/2d6025aa0ee6/eji0044-2216-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验