Amor B, Yaliraki S N, Woscholski R, Barahona M
Insititute of Chemical Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Mol Biosyst. 2014 Aug;10(8):2247-58. doi: 10.1039/c4mb00088a.
Allosteric regulation at distant sites is central to many cellular processes. In particular, allosteric sites in proteins are major targets to increase the range and selectivity of new drugs, and there is a need for methods capable of identifying intra-molecular signalling pathways leading to allosteric effects. Here, we use an atomistic graph-theoretical approach that exploits Markov transients to extract such pathways and exemplify our results in an important allosteric protein, caspase-1. Firstly, we use Markov stability community detection to perform a multiscale analysis of the structure of caspase-1 which reveals that the active conformation has a weaker, less compartmentalised large-scale structure compared to the inactive conformation, resulting in greater intra-protein coherence and signal propagation. We also carry out a full computational point mutagenesis and identify that only a few residues are critical to such structural coherence. Secondly, we characterise explicitly the transients of random walks originating at the active site and predict the location of a known allosteric site in this protein quantifying the contribution of individual bonds to the communication pathway between the active and allosteric sites. Several of the bonds we identify have been shown experimentally to be functionally critical, but we also predict a number of as yet unidentified bonds which may contribute to the pathway. Our approach offers a computationally inexpensive method for the identification of allosteric sites and communication pathways in proteins using a fully atomistic description.
远处位点的变构调节是许多细胞过程的核心。特别是,蛋白质中的变构位点是增加新药作用范围和选择性的主要靶点,因此需要能够识别导致变构效应的分子内信号通路的方法。在这里,我们使用一种原子图论方法,利用马尔可夫瞬态来提取此类通路,并在一种重要的变构蛋白——半胱天冬酶-1中举例说明我们的结果。首先,我们使用马尔可夫稳定性群落检测对半胱天冬酶-1的结构进行多尺度分析,结果表明与非活性构象相比,活性构象具有较弱、较少分区的大规模结构,从而导致更大的蛋白质内连贯性和信号传播。我们还进行了全面的计算点突变分析,确定只有少数残基对这种结构连贯性至关重要。其次,我们明确表征了起源于活性位点的随机游走的瞬态,并预测了该蛋白质中一个已知变构位点的位置,量化了各个键对活性位点和变构位点之间通信通路的贡献。我们识别出的几个键已通过实验证明在功能上至关重要,但我们也预测了一些尚未识别的键,它们可能对该通路有贡献。我们的方法提供了一种计算成本低廉的方法,用于使用完全原子描述来识别蛋白质中的变构位点和通信通路。