Suppr超能文献

蛋白质透镜(ProteinLens):一款基于网络的应用软件,用于分析生物分子原子图上的变构信号。

ProteinLens: a web-based application for the analysis of allosteric signalling on atomistic graphs of biomolecules.

机构信息

Department of Mathematics, Imperial College London, Huxley Building, 180 Queen's Gate, London SW7 2AZ, UK.

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK.

出版信息

Nucleic Acids Res. 2021 Jul 2;49(W1):W551-W558. doi: 10.1093/nar/gkab350.

Abstract

The investigation of allosteric effects in biomolecular structures is of great current interest in diverse areas, from fundamental biological enquiry to drug discovery. Here we present ProteinLens, a user-friendly and interactive web application for the investigation of allosteric signalling based on atomistic graph-theoretical methods. Starting from the PDB file of a biomolecule (or a biomolecular complex) ProteinLens obtains an atomistic, energy-weighted graph description of the structure of the biomolecule, and subsequently provides a systematic analysis of allosteric signalling and communication across the structure using two computationally efficient methods: Markov Transients and bond-to-bond propensities. ProteinLens scores and ranks every bond and residue according to the speed and magnitude of the propagation of fluctuations emanating from any site of choice (e.g. the active site). The results are presented through statistical quantile scores visualised with interactive plots and adjustable 3D structure viewers, which can also be downloaded. ProteinLens thus allows the investigation of signalling in biomolecular structures of interest to aid the detection of allosteric sites and pathways. ProteinLens is implemented in Python/SQL and freely available to use at: www.proteinlens.io.

摘要

目前,从基础生物研究到药物发现,对生物分子结构的变构效应的研究在各个领域都非常热门。本文介绍了 ProteinLens,这是一个用户友好、交互式的网络应用程序,用于基于原子图论方法研究变构信号。从生物分子(或生物分子复合物)的 PDB 文件开始,ProteinLens 获得生物分子结构的原子、能量加权图描述,然后使用两种计算效率高的方法对结构中的变构信号和通信进行系统分析:马尔可夫瞬变和键对键倾向。ProteinLens 根据从任意选择的位置(例如活性部位)发出的波动的传播速度和幅度,对每个键和残基进行评分和排序。结果通过带有交互式图和可调整的 3D 结构查看器的统计分位数分数进行可视化,也可以下载这些结果。因此,ProteinLens 可用于研究生物分子结构中的信号,以帮助检测变构部位和途径。ProteinLens 是用 Python/SQL 编写的,可以在 www.proteinlens.io 免费使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b09/8661402/0022692f3da1/gkab350gra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验