Lara Juan A, Lizcano David, Pérez Aurora, Valente Juan P
Open University of Madrid, UDIMA, Facultad de Enseñanzas Técnicas, Ctra, De la Coruña, km 38.500, Vía de Servicio, 15, 28400 Collado Villalba, Madrid, Spain.
Open University of Madrid, UDIMA, Facultad de Enseñanzas Técnicas, Ctra, De la Coruña, km 38.500, Vía de Servicio, 15, 28400 Collado Villalba, Madrid, Spain.
J Biomed Inform. 2014 Oct;51:219-41. doi: 10.1016/j.jbi.2014.06.003. Epub 2014 Jun 16.
There are now domains where information is recorded over a period of time, leading to sequences of data known as time series. In many domains, like medicine, time series analysis requires to focus on certain regions of interest, known as events, rather than analyzing the whole time series. In this paper, we propose a framework for knowledge discovery in both one-dimensional and multidimensional time series containing events. We show how our approach can be used to classify medical time series by means of a process that identifies events in time series, generates time series reference models of representative events and compares two time series by analyzing the events they have in common. We have applied our framework on time series generated in the areas of electroencephalography (EEG) and stabilometry. Framework performance was evaluated in terms of classification accuracy, and the results confirmed that the proposed schema has potential for classifying EEG and stabilometric signals. The proposed framework is useful for discovering knowledge from medical time series containing events, such as stabilometric and electroencephalographic time series. These results would be equally applicable to other medical domains generating iconographic time series, such as, for example, electrocardiography (ECG).
现在存在一些领域,其中信息会在一段时间内被记录下来,从而产生被称为时间序列的数据序列。在许多领域,如医学领域,时间序列分析需要关注某些感兴趣的区域,即所谓的事件,而不是分析整个时间序列。在本文中,我们提出了一个用于在包含事件的一维和多维时间序列中进行知识发现的框架。我们展示了如何通过一个在时间序列中识别事件、生成代表性事件的时间序列参考模型并通过分析两个时间序列共有的事件来比较它们的过程,将我们的方法用于对医学时间序列进行分类。我们已将我们的框架应用于脑电图(EEG)和稳定测量学领域生成的时间序列。根据分类准确率对框架性能进行了评估,结果证实所提出的方案具有对EEG和稳定测量信号进行分类的潜力。所提出的框架对于从包含事件的医学时间序列(如稳定测量和脑电图时间序列)中发现知识很有用。这些结果同样适用于生成图像时间序列的其他医学领域,例如心电图(ECG)。