Helguera-Repetto A Cecilia, Chacon-Salinas Rommel, Cerna-Cortes Jorge F, Rivera-Gutierrez Sandra, Ortiz-Navarrete Vianney, Estrada-Garcia Iris, Gonzalez-y-Merchand Jorge A
Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), 11340 México City, DF, Mexico ; Departamento de Inmunobioquímica, Torre de Investigación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Montes Urales 800, Colonia Lomas de Virreyes, 11000 México City, DF, Mexico.
Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional (IPN), 11340 México City, DF, Mexico.
Biomed Res Int. 2014;2014:916521. doi: 10.1155/2014/916521. Epub 2014 May 18.
Nontuberculous mycobacteria (NTM) have recently been recognized as important species that cause disease even in immunocompetent individuals. The mechanisms that these species use to infect and persist inside macrophages are not well characterised. To gain insight concerning this process we used THP-1 macrophages infected with M. abscessus, M. fortuitum, M. celatum, and M. tuberculosis. Our results showed that slow-growing mycobacteria gained entrance into these cells with more efficiency than fast-growing mycobacteria. We have also demonstrated that viable slow-growing M. celatum persisted inside macrophages without causing cell damage and without inducing reactive oxygen species (ROS), as M. tuberculosis caused. In contrast, fast-growing mycobacteria destroyed the cells and induced high levels of ROS. Additionally, the macrophage cytokine pattern induced by M. celatum was different from the one induced by either M. tuberculosis or fast-growing mycobacteria. Our results also suggest that, in some cases, the intracellular survival of mycobacteria and the immune response that they induce in macrophages could be related to their growth rate. In addition, the modulation of macrophage cytokine production, caused by M. celatum, might be a novel immune-evasion strategy used to survive inside macrophages that is different from the one reported for M. tuberculosis.
非结核分枝杆菌(NTM)最近被认为是即使在免疫功能正常个体中也能致病的重要菌种。这些菌种用于感染并在巨噬细胞内持续存在的机制尚未得到充分表征。为了深入了解这一过程,我们使用了感染脓肿分枝杆菌、偶然分枝杆菌、塞拉分枝杆菌和结核分枝杆菌的THP-1巨噬细胞。我们的结果表明,生长缓慢的分枝杆菌比生长快速的分枝杆菌更有效地进入这些细胞。我们还证明,存活的生长缓慢的塞拉分枝杆菌在巨噬细胞内持续存在,不会造成细胞损伤,也不会像结核分枝杆菌那样诱导活性氧(ROS)产生。相比之下,生长快速的分枝杆菌会破坏细胞并诱导高水平的ROS。此外,塞拉分枝杆菌诱导的巨噬细胞细胞因子模式与结核分枝杆菌或生长快速的分枝杆菌诱导的模式不同。我们的结果还表明,在某些情况下,分枝杆菌在细胞内的存活及其在巨噬细胞中诱导的免疫反应可能与其生长速度有关。此外,塞拉分枝杆菌引起的巨噬细胞细胞因子产生的调节可能是一种在巨噬细胞内存活的新型免疫逃避策略,这与报道的结核分枝杆菌的策略不同。