Bendifallah Sofiane, Ballester Marcos, Uzan Catherine, Fauvet Raffaele, Morice Philippe, Darai Emile
Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, Institut Universitaire de Cancérologie, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 707, "Epidemiology, Information Systems, Modeling", Université Pierre et Marie Curie, Paris, France.
Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, Institut Universitaire de Cancérologie, Paris, France; INSERM UMR_S 938, Université Pierre et Marie Curie, Paris, France.
Am J Obstet Gynecol. 2014 Dec;211(6):637.e1-6. doi: 10.1016/j.ajog.2014.06.028. Epub 2014 Jun 17.
Recurrence prediction is a cornerstone of patient management for borderline ovarian tumors. This study aimed to develop a nomogram predicting the recurrence probability in individual patients who had received primary surgical treatment.
This retrospective multicenter study included 186 patients with borderline ovarian tumor diagnosed from January 1980 through December 2008. A multivariate logistic regression analysis of selected prognostic features was performed and a nomogram to predict recurrence was constructed. The nomogram was internally validated.
The overall recurrence rate was 34.4% (64/186), with noninvasive and invasive forms in 29% (54/186) and 5.4% (10/186) of cases, respectively. International Federation of Gynecology and Obstetrics stage, age at diagnosis, histologic subtype, completeness of surgery, and type of surgery (radical vs fertility sparing) were associated with an increased risk of recurrence and were included in the nomogram. The predictive model had a concordance index of 0.78 (95% confidence interval, 0.76-0.80) and 0.77 (95% confidence interval, 0.75-0.79) before and after the 200 repetitions of bootstrap sample corrections, respectively, and showed good calibration.
Our results support the use of the present nomogram based on 5 clinical and pathological characteristics to predict recurrence probability with a high concordance, hence to inform patients on surgical management. External validation is required to recommend this nomogram in routine practice.
复发预测是卵巢交界性肿瘤患者管理的基石。本研究旨在开发一种列线图,以预测接受初次手术治疗的个体患者的复发概率。
这项回顾性多中心研究纳入了1980年1月至2008年12月诊断为卵巢交界性肿瘤的186例患者。对选定的预后特征进行多因素逻辑回归分析,并构建预测复发的列线图。对列线图进行内部验证。
总复发率为34.4%(64/186),非侵袭性和侵袭性复发形式分别占29%(54/186)和5.4%(10/186)。国际妇产科联盟分期、诊断时年龄、组织学亚型、手术完整性和手术类型(根治性手术与保留生育功能手术)与复发风险增加相关,并纳入列线图。预测模型在200次自抽样校正前后的一致性指数分别为0.78(95%置信区间,0.76 - 0.80)和0.77(95%置信区间,0.75 - 0.79),且显示出良好的校准。
我们的结果支持使用基于5个临床和病理特征的当前列线图来高度一致地预测复发概率,从而为患者的手术管理提供信息。在常规实践中推荐此列线图需要进行外部验证。