Suppr超能文献

上皮性卵巢癌初次手术后 5 年疾病特异性死亡率预测的列线图。

Nomogram for predicting 5-year disease-specific mortality after primary surgery for epithelial ovarian cancer.

机构信息

Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

出版信息

Gynecol Oncol. 2012 Apr;125(1):25-30. doi: 10.1016/j.ygyno.2011.12.423. Epub 2011 Dec 9.

Abstract

OBJECTIVE

To develop a nomogram based on established prognostic factors to predict the probability of 5-year disease-specific mortality after primary surgery for patients with all stages of epithelial ovarian cancer (EOC) and compare the predictive accuracy with the currently used International Federation of Gynecology and Obstetrics (FIGO) staging system.

METHODS

Using a prospectively kept database, we identified all patients with EOC who had their primary surgery at our institution between January 1996 and December 2004. Disease-specific mortality was estimated using the Kaplan-Meier method. Twenty-eight clinical and pathologic factors were analyzed. Significant factors on univariate analysis were included in the Cox proportional hazards regression model, which identified factors utilized in the nomogram. The concordance index (CI) was used as an accuracy measure, with bootstrapping to correct for optimistic bias. Calibration plots were constructed.

RESULTS

A total of 478 patients with EOC were included. The most predictive nomogram was constructed using seven variables: age, FIGO stage, residual disease status, preoperative albumin level, histology, family history suggestive of hereditary breast/ovarian cancer (HBOC) syndrome, and American Society of Anesthesiologists (ASA) status. This nomogram was internally validated using bootstrapping and shown to have excellent calibration with a bootstrap-corrected CI of 0.714. The CI for FIGO staging alone was significantly less at 0.62 (P=0.002).

CONCLUSION

We have developed an all-stage nomogram to predict 5-year disease-specific mortality after primary surgery for epithelial ovarian cancer. This tool is more accurate than FIGO staging and should be useful for patient counseling, clinical trial eligibility, postoperative management, and follow-up.

摘要

目的

基于已确立的预后因素,开发一个列线图来预测上皮性卵巢癌(EOC)各期患者行初次手术后 5 年疾病特异性死亡率的概率,并与目前使用的国际妇产科联盟(FIGO)分期系统比较预测准确性。

方法

使用前瞻性保存的数据库,我们确定了 1996 年 1 月至 2004 年 12 月期间在我院接受初次手术的所有 EOC 患者。使用 Kaplan-Meier 法估计疾病特异性死亡率。分析了 28 个临床和病理因素。单因素分析中具有统计学意义的因素纳入 Cox 比例风险回归模型,以确定列线图中使用的因素。一致性指数(CI)被用作准确性度量,采用自举法校正乐观偏差。构建校准图。

结果

共纳入 478 例 EOC 患者。使用 7 个变量构建了最具预测性的列线图:年龄、FIGO 分期、残留疾病状态、术前白蛋白水平、组织学、提示遗传性乳腺癌/卵巢癌(HBOC)综合征家族史和美国麻醉医师协会(ASA)状态。使用自举法对内部分值进行验证,显示出极好的校准,bootstrap 校正的 CI 为 0.714。FIGO 分期单独的 CI 显著降低,为 0.62(P=0.002)。

结论

我们开发了一个适用于所有分期的列线图,用于预测上皮性卵巢癌初次手术后 5 年疾病特异性死亡率。该工具比 FIGO 分期更准确,对于患者咨询、临床试验资格、术后管理和随访都应该是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验