Suppr超能文献

揭示泰蒂斯深海高盐缺氧盆地卤层中微生物的活动。

Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin.

机构信息

Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

CNR-Institute for Coastal Marine Environment, Messina, Italy.

出版信息

ISME J. 2014 Dec;8(12):2478-89. doi: 10.1038/ismej.2014.100. Epub 2014 Jun 20.

Abstract

Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0-16.3% salinity) and lower (21.4-27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles.

摘要

深海高盐缺氧盆地(DHABs)被认为是地球上最恶劣的环境之一。对于生活在这些栖息地的微生物的生物化学适应,人们知之甚少。这是首次对 DHAB 样本进行的宏转录组分析,深入了解了微生物代谢活性随物理化学条件从深地中海海水向卤水变化而发生的变化。对忒提斯 DHAB 界面的分析表明,硫酸盐还原作用在上层(盐度为 7.0-16.3%)和下层(盐度为 21.4-27.6%)盐跃层都有发生,但在更咸的下层盐跃层中,异化硫酸盐还原酶的表达减少。在上层界面,高暗碳同化率与硫氧化细菌相关的核酮糖 1,5-二磷酸羧化酶的转录物丰度较高相一致。在下层界面,与甲烷代谢和渗透压调节相关的基因表达增加。此外,在这一层中,检测到与未培养的潜在甲烷营养古菌相关的固氮酶转录物,这意味着在这个缺氧生境中存在氮固定,并为碳、氮和硫循环的关联提供了证据。

相似文献

1
Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin.
ISME J. 2014 Dec;8(12):2478-89. doi: 10.1038/ismej.2014.100. Epub 2014 Jun 20.
2
Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study.
Environ Microbiol. 2012 Jan;14(1):268-81. doi: 10.1111/j.1462-2920.2011.02634.x. Epub 2011 Oct 31.
3
Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings.
Environ Microbiol. 2011 Aug;13(8):2250-68. doi: 10.1111/j.1462-2920.2011.02478.x. Epub 2011 Apr 25.
5
Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea.
Res Microbiol. 2015 Nov;166(9):688-99. doi: 10.1016/j.resmic.2015.07.002. Epub 2015 Jul 17.
8
Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins.
BMC Biol. 2015 Dec 10;13:105. doi: 10.1186/s12915-015-0213-6.
10
Microbial ecology of deep-sea hypersaline anoxic basins.
FEMS Microbiol Ecol. 2018 Jul 1;94(7). doi: 10.1093/femsec/fiy085.

引用本文的文献

2
Microbial diversity and biogeochemical interactions in the seismically active and CO- rich Eger Rift ecosystem.
Environ Microbiome. 2024 Dec 25;19(1):113. doi: 10.1186/s40793-024-00651-9.
5
Microeukaryotic and Prokaryotic Diversity of Anchialine Caves from Eastern Adriatic Sea Islands.
Microb Ecol. 2022 Feb;83(2):257-270. doi: 10.1007/s00248-021-01760-5. Epub 2021 Apr 26.
7
Diversity, ecology and evolution of Archaea.
Nat Microbiol. 2020 Jul;5(7):887-900. doi: 10.1038/s41564-020-0715-z. Epub 2020 May 4.
8
Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin.
PLoS One. 2020 Apr 21;15(4):e0231676. doi: 10.1371/journal.pone.0231676. eCollection 2020.
10
Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome.
Genes (Basel). 2019 Mar 14;10(3):220. doi: 10.3390/genes10030220.

本文引用的文献

1
Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns.
Life (Basel). 2013 May 22;3(2):346-62. doi: 10.3390/life3020346.
2
Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways.
ISME J. 2014 May;8(5):1069-78. doi: 10.1038/ismej.2013.212. Epub 2013 Dec 12.
3
Archaea in biogeochemical cycles.
Annu Rev Microbiol. 2013;67:437-57. doi: 10.1146/annurev-micro-092412-155614. Epub 2013 Jun 26.
4
Methanogenic capabilities of ANME-archaea deduced from (13) C-labelling approaches.
Environ Microbiol. 2013 Aug;15(8):2384-93. doi: 10.1111/1462-2920.12112. Epub 2013 Mar 26.
5
Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea.
ISME J. 2013 Jul;7(7):1413-23. doi: 10.1038/ismej.2013.26. Epub 2013 Feb 28.
6
Anammox bacterial populations in deep marine hypersaline gradient systems.
Extremophiles. 2013 Mar;17(2):289-99. doi: 10.1007/s00792-013-0516-x. Epub 2013 Jan 23.
7
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. doi: 10.1093/nar/gks1219. Epub 2012 Nov 28.
8
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19321-6. doi: 10.1073/pnas.1208795109. Epub 2012 Nov 5.
9
Sizing up metatranscriptomics.
ISME J. 2013 Feb;7(2):237-43. doi: 10.1038/ismej.2012.94. Epub 2012 Aug 30.
10
Anaerobic oxidation of methane in hypersaline cold seep sediments.
FEMS Microbiol Ecol. 2013 Jan;83(1):214-31. doi: 10.1111/j.1574-6941.2012.01466.x. Epub 2012 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验