Suppr超能文献

用于脑磁图实时分析的眼电和心电伪迹剔除

Ocular and cardiac artifact rejection for real-time analysis in MEG.

作者信息

Breuer Lukas, Dammers Jürgen, Roberts Timothy P L, Shah N Jon

机构信息

Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Jülich, Germany.

Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

J Neurosci Methods. 2014 Aug 15;233:105-14. doi: 10.1016/j.jneumeth.2014.06.016. Epub 2014 Jun 19.

Abstract

BACKGROUND

Recently, magnetoencephalography (MEG) based real-time brain computing interfaces (BCI) have been developed to enable novel and promising methods for neuroscience research. It is well known that artifact rejection prior to source localization largely enhances the localization accuracy. However, many BCI approaches neglect real-time artifact removal due to its time consuming process.

NEW METHOD

The method (referred to as ocular and cardiac artifact rejection for real-time analysis, OCARTA) is based on constrained independent component analysis (cICA), where a priori information of the underlying source signals is used to optimize and accelerate signal decomposition. Thereby, prior information is incorporated by using the subject's individual cardiac and ocular activity. The algorithm automatically uses different separation strategies depending on the underlying source activity.

RESULTS

OCARTA was tested and applied to data from three different but most commonly used MEG systems (4D-Neuroimaging, VSM MedTech Inc. and Elekta Neuromag). Ocular and cardiac artifacts were effectively reduced within one iteration at a time delay of 1ms performed on a standard PC (Intel Core i5-2410M).

COMPARISON WITH EXISTING METHODS

The artifact rejection results achieved with OCARTA are in line with the results reported for offline ICA-based artifact rejection methods.

CONCLUSION

Due to the fast and subject-specific signal decomposition the new approach introduced here is capable of real-time ocular and cardiac artifact rejection.

摘要

背景

最近,基于脑磁图(MEG)的实时脑机接口(BCI)已被开发出来,以实现神经科学研究的新颖且有前景的方法。众所周知,在源定位之前去除伪迹可大大提高定位精度。然而,许多BCI方法由于其耗时的过程而忽略了实时伪迹去除。

新方法

该方法(称为用于实时分析的眼心伪迹去除,OCARTA)基于约束独立成分分析(cICA),其中利用潜在源信号的先验信息来优化和加速信号分解。因此,通过使用受试者的个体心脏和眼部活动来纳入先验信息。该算法根据潜在源活动自动使用不同的分离策略。

结果

对OCARTA进行了测试,并将其应用于来自三个不同但最常用的MEG系统(4D-Neuroimaging、VSM MedTech Inc.和Elekta Neuromag)的数据。在标准个人电脑(英特尔酷睿i5-2410M)上以1毫秒的时间延迟在一次迭代内有效减少了眼部和心脏伪迹。

与现有方法的比较

OCARTA获得的伪迹去除结果与基于离线ICA的伪迹去除方法报告的结果一致。

结论

由于快速且针对受试者的信号分解,这里介绍的新方法能够实时去除眼部和心脏伪迹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验