Suppr超能文献

成瘾科学中的数据兼容性:对测量共性的考察。

Data compatibility in the addiction sciences: an examination of measure commonality.

作者信息

Conway Kevin P, Vullo Genevieve C, Kennedy Ashley P, Finger Matthew S, Agrawal Arpana, Bjork James M, Farrer Lindsay A, Hancock Dana B, Hussong Andrea, Wakim Paul, Huggins Wayne, Hendershot Tabitha, Nettles Destiney S, Pratt Joseph, Maiese Deborah, Junkins Heather A, Ramos Erin M, Strader Lisa C, Hamilton Carol M, Sher Kenneth J

机构信息

Division of Epidemiology, Services, and Prevention Research, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States.

Division of Epidemiology, Services, and Prevention Research, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States; Kelly Government Solutions, Bethesda, MD, United States.

出版信息

Drug Alcohol Depend. 2014 Aug 1;141:153-8. doi: 10.1016/j.drugalcdep.2014.04.029. Epub 2014 May 20.

Abstract

The need for comprehensive analysis to compare and combine data across multiple studies in order to validate and extend results is widely recognized. This paper aims to assess the extent of data compatibility in the substance abuse and addiction (SAA) sciences through an examination of measure commonality, defined as the use of similar measures, across grants funded by the National Institute on Drug Abuse (NIDA) and the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Data were extracted from applications of funded, active grants involving human-subjects research in four scientific areas (epidemiology, prevention, services, and treatment) and six frequently assessed scientific domains. A total of 548 distinct measures were cited across 141 randomly sampled applications. Commonality, as assessed by density (range of 0-1) of shared measurement, was examined. Results showed that commonality was low and varied by domain/area. Commonality was most prominent for (1) diagnostic interviews (structured and semi-structured) for substance use disorders and psychopathology (density of 0.88), followed by (2) scales to assess dimensions of substance use problems and disorders (0.70), (3) scales to assess dimensions of affect and psychopathology (0.69), (4) measures of substance use quantity and frequency (0.62), (5) measures of personality traits (0.40), and (6) assessments of cognitive/neurologic ability (0.22). The areas of prevention (density of 0.41) and treatment (0.42) had greater commonality than epidemiology (0.36) and services (0.32). To address the lack of measure commonality, NIDA and its scientific partners recommend and provide common measures for SAA researchers within the PhenX Toolkit.

摘要

为了验证和扩展研究结果,需要进行全面分析以比较和整合多个研究的数据,这一点已得到广泛认可。本文旨在通过检查措施通用性来评估药物滥用和成瘾(SAA)科学领域的数据兼容性程度,措施通用性定义为使用类似的测量方法,涉及美国国立药物滥用研究所(NIDA)和美国国立酒精滥用与酒精中毒研究所(NIAAA)资助的项目。数据从涉及四个科学领域(流行病学、预防、服务和治疗)和六个经常评估的科学领域的人类受试者研究的已资助、正在进行的项目申请中提取。在141个随机抽样的申请中,共引用了548种不同的测量方法。通过共享测量的密度(范围为0 - 1)评估通用性。结果表明,通用性较低且因领域/领域而异。通用性最突出的是:(1)物质使用障碍和精神病理学的诊断访谈(结构化和半结构化)(密度为0.88),其次是(2)评估物质使用问题和障碍维度的量表(0.70),(3)评估情感和精神病理学维度的量表(0.69),(4)物质使用数量和频率的测量方法(0.62),(5)人格特质的测量方法(0.40),以及(6)认知/神经能力的评估(0.22)。预防领域(密度为0.41)和治疗领域(0.42)的通用性高于流行病学领域(0.36)和服务领域(0.32)。为了解决测量方法缺乏通用性的问题,NIDA及其科学合作伙伴在PhenX工具包中为SAA研究人员推荐并提供了通用测量方法。

相似文献

1
Data compatibility in the addiction sciences: an examination of measure commonality.
Drug Alcohol Depend. 2014 Aug 1;141:153-8. doi: 10.1016/j.drugalcdep.2014.04.029. Epub 2014 May 20.
2
The globalization of addiction research: capacity-building mechanisms and selected examples.
Harv Rev Psychiatry. 2015 Mar-Apr;23(2):147-56. doi: 10.1097/HRP.0000000000000067.
5
Increasing evidence-based substance use interventions globally: The National Institute on Drug Abuse postdoctoral fellowships.
Subst Abus. 2021;42(4):397-406. doi: 10.1080/08897077.2021.1975874. Epub 2021 Oct 1.
7
Drugs and Addiction Science: NIDA Celebrates 50 Years of Research and Looks to the Future.
Am J Psychiatry. 2024 May 1;181(5):349-352. doi: 10.1176/appi.ajp.20230880.
8
A dissenting view from one who has known both NIDA and NIAAA.
Addiction. 2010 Dec;105(12):2051-3; discussion 2056. doi: 10.1111/j.1360-0443.2010.03134.x.
9
The 'anatomy' of research funding of mental illness and addictive disorders.
Arch Gen Psychiatry. 1992 Jul;49(7):573-9. doi: 10.1001/archpsyc.1992.01820070067010.
10
Scaling Up Research on Drug Abuse and Addiction Through Social Media Big Data.
J Med Internet Res. 2017 Oct 31;19(10):e353. doi: 10.2196/jmir.6426.

引用本文的文献

1
The Youth Risk Index: psychometrics, predicting the initiation of early adolescent substance use, and the breadth of liability detected.
Front Child Adolesc Psychiatry. 2025 Jun 27;4:1513607. doi: 10.3389/frcha.2025.1513607. eCollection 2025.
3
Evidence for sex differences in the impact of cytochrome P450 genotypes on early subjective effects of cannabis.
Addict Behav. 2024 Jun;153:107996. doi: 10.1016/j.addbeh.2024.107996. Epub 2024 Feb 21.
4
Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use.
Mol Psychiatry. 2024 Jan;29(1):124-133. doi: 10.1038/s41380-023-02310-w. Epub 2023 Nov 7.
5
Advancing Biomarkers for Treatment of Smoking and Nicotine Dependence: An Overview.
Addict Neurosci. 2023 Dec;8. doi: 10.1016/j.addicn.2023.100117. Epub 2023 Jul 8.
7
Identifying Datasets for Cross-Study Analysis in dbGaP using PhenX.
Sci Data. 2022 Sep 1;9(1):532. doi: 10.1038/s41597-022-01660-4.
9
Harmonizing altered measures in integrative data analysis: A methods analogue study.
Behav Res Methods. 2021 Jun;53(3):1031-1045. doi: 10.3758/s13428-020-01472-7.

本文引用的文献

1
Genome-wide association analysis identifies 13 new risk loci for schizophrenia.
Nat Genet. 2013 Oct;45(10):1150-9. doi: 10.1038/ng.2742. Epub 2013 Aug 25.
2
Integrative data analysis in clinical psychology research.
Annu Rev Clin Psychol. 2013;9:61-89. doi: 10.1146/annurev-clinpsy-050212-185522. Epub 2013 Feb 1.
3
Measuring alcohol consumption for genomic meta-analyses of alcohol intake: opportunities and challenges.
Am J Clin Nutr. 2012 Mar;95(3):539-47. doi: 10.3945/ajcn.111.015545. Epub 2012 Feb 1.
4
A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry.
Am J Psychiatry. 2011 Oct;168(10):1041-9. doi: 10.1176/appi.ajp.2011.11020191. Epub 2011 Sep 2.
5
The PhenX Toolkit: get the most from your measures.
Am J Epidemiol. 2011 Aug 1;174(3):253-60. doi: 10.1093/aje/kwr193. Epub 2011 Jul 11.
6
A quantitative-trait genome-wide association study of alcoholism risk in the community: findings and implications.
Biol Psychiatry. 2011 Sep 15;70(6):513-8. doi: 10.1016/j.biopsych.2011.02.028. Epub 2011 May 6.
7
Genetic vulnerability and susceptibility to substance dependence.
Neuron. 2011 Feb 24;69(4):618-27. doi: 10.1016/j.neuron.2011.02.015.
8
Phenotype harmonization and cross-study collaboration in GWAS consortia: the GENEVA experience.
Genet Epidemiol. 2011 Apr;35(3):159-73. doi: 10.1002/gepi.20564. Epub 2011 Jan 31.
9
Consilient research approaches in studying gene x environment interactions in alcohol research.
Addict Biol. 2010 Apr;15(2):200-16. doi: 10.1111/j.1369-1600.2009.00189.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验