Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
Curr Opin Chem Biol. 2014 Aug;21:73-80. doi: 10.1016/j.cbpa.2014.05.008. Epub 2014 Jun 20.
I discuss some physico-chemical and evolutionary aspects of enzyme accuracy (selectivity, specificity) and speed (turnover rate, processivity). Accuracy can be a beneficial side-product of active-sites being refined to proficiently convert a given substrate into one product. However, exclusion of undesirable, non-cognate substrates is also an explicitly evolved trait that may come with a cost. I define two schematic mechanisms. Ground-state discrimination applies to enzymes where selectivity is achieved primarily at the level of substrate binding. Exemplified by DNA methyltransferases and the ribosome, ground-state discrimination imposes strong accuracy-rate tradeoffs. Alternatively, transition-state discrimination, applies to relatively small substrates where substrate binding and chemistry are efficiently coupled, and evokes weaker tradeoffs. Overall, the mechanistic, structural and evolutionary basis of enzymatic accuracy-rate tradeoffs merits deeper understanding.
我讨论了一些关于酶准确性(选择性、特异性)和速度(周转率、连续性)的物理化学和进化方面的内容。准确性可以是活性位点被精确地改进以将给定的底物转化为一种产物的有益副产品。然而,排除不想要的、非同源的底物也是一种明确进化的特征,它可能会带来成本。我定义了两种示意性机制。基态区分适用于那些主要通过底物结合来实现选择性的酶。以 DNA 甲基转移酶和核糖体为例,基态区分造成了强烈的准确性-速度权衡。相反,过渡态区分适用于相对较小的底物,其中底物结合和化学反应有效地耦合在一起,并引起较弱的权衡。总的来说,酶的准确性-速度权衡的机制、结构和进化基础值得更深入的理解。