Suppr超能文献

众人逐鹿,几人得之:探索动力学的成本与敏感性

Many Will Enter, Few Will Win: Cost and Sensitivity of Exploratory Dynamics.

作者信息

Koslover Elena F, Lin Milo M, Phillips Rob

机构信息

Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.

Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.

出版信息

ArXiv. 2025 Aug 29:arXiv:2506.00775v2.

Abstract

A variety of biomolecular systems rely on exploratory dynamics to reach target locations or states within a cell. Without a mechanism to remotely sense and move directly towards a target, the system must sample over many paths, often including resetting transitions back to the origin. We investigate how exploratory dynamics can confer an important functional benefit: the ability to respond to small changes in parameters with large shifts in the steady-state behavior. However, such enhanced sensitivity comes at a cost: resetting cycles require energy dissipation in order to push the system out of its equilibrium steady state. We focus on minimalist models for two concrete examples: translational proofreading in the ribosome and microtubule length control via dynamic instability to illustrate the trade-offs between energetic cost and sensitivity. In the former, a driven hydrolysis step enhances the ability to distinguish between substrates and decoys with small binding energy differences. In the latter, resetting cycles enable catalytic control, with the steady-state length distribution modulated by sub-stoichiometric concentrations of a reusable catalyst. Synthesizing past models of these well-studied systems, we show how path-counting and circuit mapping approaches can be used to address fundamental questions such as the number of futile cycles inherent in translation and the steady-state length distribution of a dynamically unstable polymer. In both cases, a limited amount of thermodynamic driving is sufficient to yield a qualitative transition to a system with enhanced sensitivity, enabling accurate discrimination and catalytic control at a modest energetic cost.

摘要

多种生物分子系统依靠探索性动力学来到达细胞内的目标位置或状态。如果没有一种机制来远程感知并直接向目标移动,系统就必须在许多路径上进行采样,通常还包括重置回到原点的转变。我们研究探索性动力学如何能带来一项重要的功能益处:即能够以稳态行为的大幅转变来响应参数的微小变化。然而,这种增强的敏感性是有代价的:重置循环需要能量耗散,以便将系统推出其平衡稳态。我们聚焦于两个具体例子的极简模型:核糖体中的翻译校对以及通过动态不稳定性进行的微管长度控制,以说明能量成本与敏感性之间的权衡。在前者中,一个驱动水解步骤增强了区分具有微小结合能差异的底物和诱饵的能力。在后者中,重置循环实现了催化控制,稳态长度分布由亚化学计量浓度的可重复使用催化剂调节。综合过去对这些经过充分研究的系统的模型,我们展示了如何使用路径计数和电路映射方法来解决诸如翻译中固有无效循环的数量以及动态不稳定聚合物的稳态长度分布等基本问题。在这两种情况下,有限量的热力学驱动足以产生向具有增强敏感性的系统的定性转变,从而能够以适度 的能量成本实现准确的区分和催化控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c01/12407632/748911c7de34/nihpp-2506.00775v2-f0012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验