Toro Zapata Hernan Dario, Caicedo Casso Angelica Graciela, Bichara Derdei, Lee Sunmi
Licenciatura en Matemáticas, Universidad del Quindío, Quindío, Colombia.
Departamento de Matematicas, Universidad del Valle, Cali, Colombia.
Osong Public Health Res Perspect. 2014 Feb;5(1):3-8. doi: 10.1016/j.phrp.2014.01.001. Epub 2014 Jan 31.
Mathematical models can be helpful to understand the complex dynamics of human immunodeficiency virus infection within a host. Most of work has studied the interactions of host responses and virus in the presence of active cytotoxic immune cells, which decay to zero when there is no virus. However, recent research highlights that cytotoxic immune cells can be inactive but never be depleted.
We propose a mathematical model to investigate the human immunodeficiency virus dynamics in the presence of both active and inactive cytotoxic immune cells within a host. We explore the impact of the immune responses on the dynamics of human immunodeficiency virus infection under different disease stages.
Standard mathematical and numerical analyses are presented for this new model. Specifically, the basic reproduction number is computed and local and global stability analyses are discussed.
Our results can give helpful insights when designing more effective drug schedules in the presence of active and inactive immune responses.
数学模型有助于理解宿主内人类免疫缺陷病毒感染的复杂动态。大多数研究工作都在有活性细胞毒性免疫细胞存在的情况下研究宿主反应与病毒的相互作用,当没有病毒时,这些细胞毒性免疫细胞会衰减至零。然而,最近的研究强调细胞毒性免疫细胞可能处于无活性状态但永远不会耗尽。
我们提出一个数学模型来研究宿主内存在活性和无活性细胞毒性免疫细胞时的人类免疫缺陷病毒动态。我们探讨了不同疾病阶段免疫反应对人类免疫缺陷病毒感染动态的影响。
针对这个新模型进行了标准的数学和数值分析。具体而言,计算了基本再生数,并讨论了局部和全局稳定性分析。
我们的结果可为在存在活性和无活性免疫反应的情况下设计更有效的药物方案提供有益的见解。