Urology Division, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.
Department of Radiation Oncology and Biological Therapeutics Center, Washington University School of Medicine, St Louis, MO, USA.
Lab Invest. 2014 Aug;94(8):881-92. doi: 10.1038/labinvest.2014.78. Epub 2014 Jun 23.
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
血管内皮细胞(ECs)是理想的基因治疗靶点,因为它们提供了广泛的组织进入途径,并且是静脉内载体给药后的第一个接触表面。人类重组腺病毒血清型 5(Ad5)是最常用的基因转移系统,因为其具有可观的转基因载量能力,并且不存在体细胞突变风险。然而,标准的 Ad5 载体主要在静脉内给药后转导肝脏,而不是血管。我们最近开发了一种 Ad5 载体,其中包含一个整合到缺失 knob 的髓系细胞结合肽(MBP)的 T4 纤维蛋白嵌合纤维(Ad.MBP)。该载体被证明可以通过载体交接机制转导肺内皮细胞。在这里,我们测试了 Ad.MBP 载体的全身趋向性、髓系细胞的必要性以及载体-EC 表达剂量反应。使用全面的多器官共免疫荧光分析,我们发现 Ad.MBP 在肺、心脏、肾脏、骨骼肌、胰腺、小肠和大脑中产生了广泛的 EC 转导。令人惊讶的是,Ad.MBP 保留了肝细胞趋向性,尽管与标准 Ad5 相比频率降低。虽然 Ad.MBP 特异性地与髓系细胞结合,但多器官 Ad.MBP 表达不依赖于循环单核细胞或巨噬细胞。Ad.MBP 剂量降低保持了完全的肺靶向能力,但大大降低了其他器官的转基因表达。将 EC 特异性的 ROBO4 替换为 CMV 启动子/增强子不仅消除了肝细胞表达,还降低了其他器官的基因表达。总的来说,我们的多层次靶向策略可以使以前无法到达的与最衰弱或致命的人类疾病相关的器官能够进行治疗性生物生产。