Widdifield Jessica, Bombardier Claire, Bernatsky Sasha, Paterson J Michael, Green Diane, Young Jacqueline, Ivers Noah, Butt Debra A, Jaakkimainen R Liisa, Thorne J Carter, Tu Karen
University of Toronto, Toronto, 200 Elizabeth St 13EN-224, Toronto, ON M5G 2C4, Canada.
BMC Musculoskelet Disord. 2014 Jun 23;15:216. doi: 10.1186/1471-2474-15-216.
We have previously validated administrative data algorithms to identify patients with rheumatoid arthritis (RA) using rheumatology clinic records as the reference standard. Here we reassessed the accuracy of the algorithms using primary care records as the reference standard.
We performed a retrospective chart abstraction study using a random sample of 7500 adult patients under the care of 83 family physicians contributing to the Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Using physician-reported diagnoses as the reference standard, we computed and compared the sensitivity, specificity, and predictive values for over 100 administrative data algorithms for RA case ascertainment.
We identified 69 patients with RA for a lifetime RA prevalence of 0.9%. All algorithms had excellent specificity (>97%). However, sensitivity varied (75-90%) among physician billing algorithms. Despite the low prevalence of RA, most algorithms had adequate positive predictive value (PPV; 51-83%). The algorithm of "[1 hospitalization RA diagnosis code] or [3 physician RA diagnosis codes with ≥1 by a specialist over 2 years]" had a sensitivity of 78% (95% CI 69-88), specificity of 100% (95% CI 100-100), PPV of 78% (95% CI 69-88) and NPV of 100% (95% CI 100-100).
Administrative data algorithms for detecting RA patients achieved a high degree of accuracy amongst the general population. However, results varied slightly from our previous report, which can be attributed to differences in the reference standards with respect to disease prevalence, spectrum of disease, and type of comparator group.
我们之前已经验证了行政数据算法,以使用风湿病诊所记录作为参考标准来识别类风湿性关节炎(RA)患者。在此,我们使用初级保健记录作为参考标准重新评估了这些算法的准确性。
我们进行了一项回顾性图表摘要研究,对加拿大安大略省83位家庭医生所诊治的7500名成年患者进行随机抽样,这些医生参与了电子病历行政数据链接数据库(EMRALD)。以医生报告的诊断作为参考标准,我们计算并比较了100多种用于RA病例确定的行政数据算法的敏感性、特异性和预测值。
我们确定了69例RA患者,终身RA患病率为0.9%。所有算法都具有出色的特异性(>97%)。然而,医生计费算法之间的敏感性有所不同(75 - 90%)。尽管RA患病率较低,但大多数算法具有足够的阳性预测值(PPV;51 - 83%)。“[1个住院RA诊断代码]或[3个医生RA诊断代码,其中至少1个由专科医生在2年内给出]”的算法敏感性为78%(95%CI 69 - 88),特异性为100%(95%CI 100 - 100),PPV为78%(95%CI 69 - 88),阴性预测值(NPV)为100%(95%CI 100 - 100)。
用于检测RA患者的行政数据算法在普通人群中达到了高度准确性。然而,结果与我们之前的报告略有不同,这可归因于参考标准在疾病患病率、疾病谱和比较组类型方面的差异。