Butt Debra A, Tu Karen, Young Jacqueline, Green Diane, Wang Myra, Ivers Noah, Jaakkimainen Liisa, Lam Robert, Guttman Mark
Research Institute, Department of Family and Community Medicine, University of Toronto, Toronto, Ont., Canada.
Neuroepidemiology. 2014;43(1):28-37. doi: 10.1159/000365590. Epub 2014 Oct 16.
Epidemiological studies for identifying patients with Parkinson's disease (PD) or Parkinsonism (PKM) have been limited by their nonrandom sampling techniques and mainly veteran populations. This reduces their use for health services planning. The purpose of this study was to validate algorithms for the case ascertainment of PKM from administrative databases using primary care patients as the reference standard.
We conducted a retrospective chart abstraction using a random sample of 73,003 adults aged ≥ 20 years from a primary care Electronic Medical Record Administrative data Linked Database (EMRALD) in Ontario, Canada. Physician diagnosis in the EMR was used as the reference standard and population-based administrative databases were used to identify patients with PKM from the derivation of algorithms. We calculated algorithm performance using sensitivity, specificity, and predictive values and then determined the population-level prevalence and incidence trends with the most accurate algorithms.
We selected, '2 physician billing codes in 1 year' as the optimal administrative data algorithm in adults and seniors (≥ 65 years) due to its sensitivity (70.6-72.3%), specificity (99.9-99.8%), positive predictive value (79.5-82.8%), negative predictive value (99.9-99.7%), and prevalence (0.28-1.20%), respectively.
Algorithms using administrative databases can reliably identify patients with PKM with a high degree of accuracy.
用于识别帕金森病(PD)或帕金森综合征(PKM)患者的流行病学研究受到非随机抽样技术以及主要为老年人群体的限制。这降低了它们在卫生服务规划中的应用价值。本研究的目的是使用初级保健患者作为参考标准,验证从行政数据库中确定PKM病例的算法。
我们从加拿大安大略省的一个初级保健电子病历行政数据链接数据库(EMRALD)中,对73003名年龄≥20岁的成年人进行随机抽样,进行回顾性病历摘要分析。电子病历中的医生诊断被用作参考标准,基于人群的行政数据库被用于从算法推导中识别PKM患者。我们使用敏感性、特异性和预测值来计算算法性能,然后用最准确的算法确定人群水平的患病率和发病率趋势。
我们选择“1年内2个医生计费代码”作为成人和老年人(≥65岁)的最佳行政数据算法,其敏感性分别为(70.6 - 72.3%)、特异性为(99.9 - 99.8%)、阳性预测值为(79.5 - 82.8%)、阴性预测值为(99.9 - 99.7%),患病率为(0.28 - 1.20%)。
使用行政数据库的算法能够以高度准确性可靠地识别PKM患者。