Suppr超能文献

利用细胞内游离氨基酸对大肠杆菌中心碳代谢进行可靠的代谢通量估计

Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids.

作者信息

Okahashi Nobuyuki, Kajihata Shuichi, Furusawa Chikara, Shimizu Hiroshi

机构信息

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

Metabolites. 2014 May 30;4(2):408-20. doi: 10.3390/metabo4020408.

Abstract

13C metabolic flux analysis (MFA) is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs) is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs). Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution.

摘要

13C代谢通量分析(MFA)是一种用于研究体内通量分布的代谢工程工具。对细胞内游离氨基酸(FAA)进行直接的13C富集分析有望缩短MFA标记实验的时间。然而,由于细胞内游离代谢物的库大小取决于细胞代谢条件,可测量的FAA在MFA实验中会有所不同。在本研究中,对FAA的最小13C富集数据进行了研究,以开展基于FAA的MFA。使用13C标记葡萄糖对大肠杆菌连续培养进行的一项检测表明,FAA达到同位素稳态所需的时间比使用蛋白质氨基酸(PAA)的传统方法要快得多。考虑到95%的置信区间,发现使用FAA估计的代谢通量分布与基于PAA的方法具有相似的可靠性。比较分析确定谷氨酸、天冬氨酸、丙氨酸和苯丙氨酸是在不同培养条件下大肠杆菌中观察到的常见氨基酸。MFA的结果还表明,为了可靠地分析通量分布,需要这四种氨基酸的13C富集数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d7/4101513/a79456feacb3/metabolites-04-00408-g001.jpg

相似文献

2
Evaluating (13)C enrichment data of free amino acids for precise metabolic flux analysis.
Biotechnol J. 2011 Nov;6(11):1377-87. doi: 10.1002/biot.201000446.
4
OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.
Biomed Res Int. 2014;2014:627014. doi: 10.1155/2014/627014. Epub 2014 Jun 11.
5
Investigation of useful carbon tracers for C-metabolic flux analysis of by considering five experimentally determined flux distributions.
Metab Eng Commun. 2016 Jun 7;3:187-195. doi: 10.1016/j.meteno.2016.06.001. eCollection 2016 Dec.
7
Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis.
Metab Eng. 2012 Sep;14(5):533-41. doi: 10.1016/j.ymben.2012.06.003. Epub 2012 Jul 6.
9
Isotopically nonstationary 13C metabolic flux analysis.
Methods Mol Biol. 2013;985:367-90. doi: 10.1007/978-1-62703-299-5_18.

引用本文的文献

1
C-metabolic flux analysis of in complex media.
Metab Eng Commun. 2025 Apr 1;20:e00260. doi: 10.1016/j.mec.2025.e00260. eCollection 2025 Jun.
2
C-metabolic flux analysis of respiratory chain disrupted strain ΔndhF1 of Synechocystis sp. PCC 6803.
Appl Biochem Biotechnol. 2025 May;197(5):2944-2957. doi: 10.1007/s12010-024-05138-4. Epub 2025 Jan 15.
5
Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting.
Microb Cell Fact. 2023 Oct 8;22(1):204. doi: 10.1186/s12934-023-02221-z.
6
Prediction of Metabolic Flux Distribution by Flux Sampling: As a Case Study, Acetate Production from Glucose in .
Bioengineering (Basel). 2023 May 24;10(6):636. doi: 10.3390/bioengineering10060636.
7
10
Investigation of useful carbon tracers for C-metabolic flux analysis of by considering five experimentally determined flux distributions.
Metab Eng Commun. 2016 Jun 7;3:187-195. doi: 10.1016/j.meteno.2016.06.001. eCollection 2016 Dec.

本文引用的文献

1
OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.
Biomed Res Int. 2014;2014:627014. doi: 10.1155/2014/627014. Epub 2014 Jun 11.
2
Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.
Biotechnol Adv. 2013 Nov;31(6):818-26. doi: 10.1016/j.biotechadv.2013.05.002. Epub 2013 May 13.
3
13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis.
J Biol Chem. 2012 Aug 10;287(33):27959-70. doi: 10.1074/jbc.M112.366492. Epub 2012 Jun 27.
4
Evaluating (13)C enrichment data of free amino acids for precise metabolic flux analysis.
Biotechnol J. 2011 Nov;6(11):1377-87. doi: 10.1002/biot.201000446.
5
The benefits of being transient: isotope-based metabolic flux analysis at the short time scale.
Appl Microbiol Biotechnol. 2011 Sep;91(5):1247-65. doi: 10.1007/s00253-011-3390-4. Epub 2011 Jul 6.
6
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
Nat Chem Biol. 2011 May 22;7(7):445-52. doi: 10.1038/nchembio.580.
7
From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.
Metab Eng. 2011 Mar;13(2):159-68. doi: 10.1016/j.ymben.2011.01.003. Epub 2011 Jan 15.
10
(13)C-based metabolic flux analysis.
Nat Protoc. 2009;4(6):878-92. doi: 10.1038/nprot.2009.58. Epub 2009 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验