Szyperski T
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.
Eur J Biochem. 1995 Sep 1;232(2):433-48. doi: 10.1111/j.1432-1033.1995.tb20829.x.
Biosynthetically directed fractional 13C labeling of proteinogenic amino acids is achieved by expression of proteins on a minimal medium which contains a mixture of [13C6]glucose and glucose with natural isotope abundance as the sole carbon source. Subsequent hydrolysis of the proteins yields the free amino acids. The observation of 13C-13C spin-spin scalar coupling fine structures in sensitive two-dimensional heteronuclear [13C,1H]-correlation spectroscopy (2D [13C,1H]-COSY) allows one to identify non-random 13C-labeling patterns arising from the incorporation of intact two-carbon and three-carbon fragments from a single source molecule of glucose into the amino acids. Since 2D [13C,1H]-COSY suffices to resolve all relevant resonances, the mixture of amino acids can be analyzed without further separation of its components. Probabilistic equations relate the observed multiplet intensities of the 13C fine structures to the relative abundance of the intact carbon fragments. They enable a quantitative analysis of the carbon flux in the network of biosynthetic pathways, thus using the proteinogenic amino acids as probes to study intermediary metabolism. This paper shows that biosynthetically directed fractional 13C labeling of amino acids provides an efficient analytical tool to quantitatively investigate glycolysis, pyruvate metabolism, pentose phosphate pathway, tricarboxylic acid cycle and C1 metabolism. Possible applications of the method include both the exploration of unknown biosynthetic pathways and the rapid elucidation of the response of a known biosynthetic reaction network to changes in growth conditions or genetic manipulations. In conjunction with the relatively low costs for isotopes, manpower and NMR instrument time, this makes biosynthetic fractional 13C labeling of proteinogenic amino acids particularly attractive to support process design and metabolic engineering in biotechnology, since screening procedures become feasible which enable a systematic characterization of the cell's metabolic state as a function of parameters that are involved in the optimization of biotechnological processes.
通过在以[13C6]葡萄糖和具有天然同位素丰度的葡萄糖混合物作为唯一碳源的基本培养基上表达蛋白质,实现了对蛋白质ogenic氨基酸的生物合成定向分数13C标记。随后对蛋白质进行水解,得到游离氨基酸。在灵敏的二维异核[13C,1H]相关光谱(二维[13C,1H]-COSY)中观察到13C-13C自旋-自旋标量耦合精细结构,使得人们能够识别由于完整的二碳和三碳片段从单个葡萄糖源分子掺入氨基酸而产生的非随机13C标记模式。由于二维[13C,1H]-COSY足以解析所有相关共振,因此无需进一步分离氨基酸混合物的成分即可对其进行分析。概率方程将观察到的13C精细结构的多重峰强度与完整碳片段的相对丰度相关联。它们能够对生物合成途径网络中的碳通量进行定量分析,从而将蛋白质ogenic氨基酸用作研究中间代谢的探针。本文表明,氨基酸的生物合成定向分数13C标记提供了一种有效的分析工具,用于定量研究糖酵解、丙酮酸代谢、磷酸戊糖途径、三羧酸循环和C1代谢。该方法的可能应用包括探索未知的生物合成途径以及快速阐明已知生物合成反应网络对生长条件变化或基因操作的响应。结合同位素、人力和NMR仪器时间方面相对较低的成本,这使得蛋白质ogenic氨基酸的生物合成分数13C标记对于支持生物技术中的工艺设计和代谢工程特别有吸引力,因为筛选程序变得可行,能够系统地表征细胞的代谢状态作为参与生物技术工艺优化的参数的函数。