Gruber Mathias F, Johnson Carl J, Tang Chuyang, Jensen Mogens H, Yde Lars, Hélix-Nielsen Claus
Aquaporin A/S, Ole Maaløes Vej 3, Copenhagen N DK-2200, Denmark.
DHI Water & Environment, Agern Alle 5, Hørsholm DK-2970, Denmark.
Membranes (Basel). 2012 Nov 9;2(4):764-82. doi: 10.3390/membranes2040764.
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.
在正向渗透(FO)中,跨半透膜产生的渗透压梯度用于促使水从稀进料溶液传输到浓汲取溶液中。这一原理在水净化、废水处理、海水淡化和发电等领域已展现出巨大潜力。为便于优化并增进对膜系统的理解,需要一个全面的模型,以便能轻松研究分离过程中的所有主要参数。在此,我们展示了一个为模拟非对称膜的正向渗透实验而开发的计算流体动力学(CFD)模型的实验验证。将模拟结果与使用两个截然不同的复杂三维膜腔获得的实验结果进行了比较。结果发现,CFD模型能够准确描述各种流动条件下溶质的分离过程以及水透过膜的情况。此外,还展示了如何使用CFD模型以促进传质的方式优化膜的几何形状。