Suppr超能文献

经导管主动脉瓣置换术后不良结局的预测因素:PARTNER(主动脉经导管瓣膜置换术)试验结果。

Predictors of poor outcomes after transcatheter aortic valve replacement: results from the PARTNER (Placement of Aortic Transcatheter Valve) trial.

机构信息

From Saint Luke's Mid America Heart Institute, Kansas City, MO (S.V.A., Y.L., E.A.M., D.J.C.); University of Missouri-Kansas City, Kansas City, MO (S.V.A., E.A.M., D.J.C.); Harvard Clinical Research Institute, Boston, MA (M.R.R.); Columbia-Presbyterian Hospital, New York, NY (A.J.K., S.K.K., P.G., M.B.L.); Washington University, St. Louis, MO (A.Z.); Emory University School of Medicine, Atlanta, GA (V.H.T.); Laval University, Quebec, Canada (J.R.-C.); Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach, FL (N.B.); and Baylor Healthcare System, Plano, TX (M.J.M.).

出版信息

Circulation. 2014 Jun 24;129(25):2682-90. doi: 10.1161/CIRCULATIONAHA.113.007477. Epub 2014 May 23.

Abstract

BACKGROUND

Transcatheter aortic valve replacement (TAVR) is a less invasive option for treatment of high-risk patients with severe aortic stenosis. We sought to identify patients at high risk for poor outcome after TAVR using a novel definition of outcome that integrates quality of life with mortality.

METHODS AND RESULTS

Among 2137 patients who underwent TAVR in the PARTNER (Placement of Aortic Transcatheter Valve) trial or its associated continued access registry, quality of life was assessed with the Kansas City Cardiomyopathy Questionnaire-Overall Summary Scale (KCCQ-OS; range 0-100, where a higher score equates to a better quality of life) at baseline and at 1, 6, and 12 months after TAVR. A poor 6-month outcome (defined as death, KCCQ-OS score <45, or ≥10-point decrease in KCCQ-OS score compared with baseline) occurred in 704 patients (33%). Using a split-sample design, we developed a multivariable model to identify a parsimonious set of covariates to identify patients at high risk for poor outcome. The model demonstrated moderate discrimination (c-index=0.66) and good calibration with the observed data, performed similarly in the separate validation cohort (c-index=0.64), and identified 211 patients (10% of the population) with a ≥50% likelihood of a poor outcome after TAVR. A second model that explored predictors of poor outcome at 1 year identified 1102 patients (52%) with ≥50% likelihood and 178 (8%) with ≥70% likelihood of a poor 1-year outcome after TAVR.

CONCLUSIONS

Using a large, multicenter cohort, we have developed and validated predictive models that can identify patients at high risk for a poor outcome after TAVR. Although model discrimination was moderate, these models may help guide treatment choices and offer patients realistic expectations of outcomes based on their presenting characteristics.

CLINICAL TRIAL REGISTRATION URL

http://www.clinicaltrials.gov. Unique identifier: NCT00530894.

摘要

背景

经导管主动脉瓣置换术(TAVR)是一种治疗高危重度主动脉瓣狭窄患者的微创选择。我们试图使用一种将生活质量与死亡率相结合的新的预后定义来确定 TAVR 后预后不良风险较高的患者。

方法和结果

在 PARTNER(经导管主动脉瓣置换术)试验或其相关的持续准入注册中,2137 例接受 TAVR 的患者使用堪萨斯城心肌病问卷总体综合评分(KCCQ-OS;范围 0-100,分数越高表示生活质量越好)进行基线和 TAVR 后 1、6 和 12 个月的生活质量评估。704 例(33%)患者发生 6 个月不良预后(定义为死亡、KCCQ-OS 评分<45 或与基线相比 KCCQ-OS 评分下降≥10 分)。采用分样设计,我们建立了一个多变量模型,以确定一组简化的协变量,以识别预后不良风险较高的患者。该模型具有中度的判别能力(c 指数=0.66),与观察数据的校准良好,在单独的验证队列中表现相似(c 指数=0.64),并确定了 211 例(人群的 10%)TAVR 后不良预后的可能性≥50%。第二个探索 1 年不良预后预测因素的模型确定了 1102 例(52%)患者的可能性≥50%,178 例(8%)患者的可能性≥70%。

结论

使用大型多中心队列,我们开发并验证了预测模型,可以识别 TAVR 后预后不良风险较高的患者。尽管模型的判别能力中等,但这些模型可能有助于指导治疗选择,并根据患者的临床表现为其提供对预后的现实期望。

临床试验注册网址

http://www.clinicaltrials.gov。唯一标识符:NCT00530894。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验