Biozentrum, University of Basel, 4056 Basel, Switzerland;
Institute of Microbiology, Eidgenössiche Technische Hochschule Zürich, 8093 Zürich, Switzerland; and.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9929-34. doi: 10.1073/pnas.1406694111. Epub 2014 Jun 23.
Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.
福氏志贺菌在受感染的人体上皮细胞中以极高的速度增殖。这种旺盛的生长对迅速发展为危及生命的血性腹泻有重要影响,但潜在的代谢机制仍知之甚少。在这里,我们使用代谢组学、蛋白质组学和遗传实验来确定细胞培养模型中感染期间宿主和志贺菌的代谢。这些数据表明,受感染的宿主细胞通过糖酵解途径保持着基本正常的通量,但这些途径的整个产物都被志贺菌捕获,很可能是以丙酮酸的形式。这种惊人的策略为志贺菌提供了丰富的有利能源,同时保持了宿主细胞的 ATP 生成、能量电荷维持和存活,尽管正在进行剧烈的开发。志贺菌使用一个简单的三步途径来高速代谢丙酮酸,以乙酸盐作为排泄废物。该途径对志贺菌细胞内生长至关重要,提示了针对这种毁灭性疾病的抗菌化疗的靶点。