文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles.

作者信息

Zhou Jie, Zhang Jian, Gao Wenxi

机构信息

Department of Urology, Hubei Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.

出版信息

Int J Nanomedicine. 2014 Jun 10;9:2905-17. doi: 10.2147/IJN.S59556. eCollection 2014.


DOI:10.2147/IJN.S59556
PMID:24959078
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4061166/
Abstract

The stability of enzyme-conjugated magnetic iron oxide nanoparticles in plasma is of great importance for in vivo delivery of the conjugated enzyme. In this study, β-glucosidase was conjugated on aminated magnetic iron oxide nanoparticles using the glutaraldehyde method (β-Glu-MNP), and further PEGylated via N-hydroxysuccinimide chemistry. The PEG-modified, β-glucosidase-immobilized magnetic iron oxide nanoparticles (PEG-β-Glu-MNPs) were characterized by hydrodynamic diameter distribution, zeta potential, Fourier transform infrared spectroscopy, transmission electron microscopy, and a superconducting quantum interference device. The results showed that the multidomain structure and magnetization properties of these nanoparticles were conserved well throughout the synthesis steps, with an expected diameter increase and zeta potential shifts. The Michaelis constant was calculated to evaluate the activity of conjugated β-glucosidase on the magnetic iron oxide nanoparticles, indicating 73.0% and 65.4% of enzyme activity remaining for β-Glu-MNP and PEG-β-Glu-MNP, respectively. Both magnetophoretic mobility analysis and pharmacokinetics showed improved in vitro/in vivo stability of PEG-β-Glu-MNP compared with β-Glu-MNP. In vivo magnetic targeting of PEG-β-Glu-MNP was confirmed by magnetic resonance imaging and electron spin resonance analysis in a mouse model of subcutaneous 9L-glioma. Satisfactory accumulation of PEG-β-Glu-MNP in tumor tissue was successfully achieved, with an iron content of 627±45 nmol Fe/g tissue and β-glucosidase activity of 32.2±8.0 mU/g tissue.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/a9c35b75b6ec/ijn-9-2905Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/7302309d369d/ijn-9-2905Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/8433a77962af/ijn-9-2905Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/a699bfa4360a/ijn-9-2905Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/fb95dd66d6da/ijn-9-2905Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/fb5c967b7aa5/ijn-9-2905Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/44e63e0c0efd/ijn-9-2905Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/46efc293d59c/ijn-9-2905Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/12756aa70603/ijn-9-2905Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/a9c35b75b6ec/ijn-9-2905Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/7302309d369d/ijn-9-2905Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/8433a77962af/ijn-9-2905Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/a699bfa4360a/ijn-9-2905Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/fb95dd66d6da/ijn-9-2905Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/fb5c967b7aa5/ijn-9-2905Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/44e63e0c0efd/ijn-9-2905Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/46efc293d59c/ijn-9-2905Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/12756aa70603/ijn-9-2905Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/349a/4061166/a9c35b75b6ec/ijn-9-2905Fig9.jpg

相似文献

[1]
Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles.

Int J Nanomedicine. 2014-6-10

[2]
Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles.

Nanotechnology. 2013-8-23

[3]
PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles.

Biotechnol Lett. 2020-8

[4]
Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

Biomaterials. 2010-12-21

[5]
Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin.

Int J Nanomedicine. 2020-6-29

[6]
Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles.

Biomaterials. 2011-9

[7]
Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model.

Pharm Res. 2014-3

[8]
Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer.

Korean J Radiol. 2014

[9]
Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging.

AAPS J. 2009-10-20

[10]
Mouse lymphatic endothelial cell targeted probes: anti-LYVE-1 antibody-based magnetic nanoparticles.

Int J Nanomedicine. 2013-6-21

引用本文的文献

[1]
Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders.

Cell Prolif. 2025-4

[2]
The Use of Plant Viral Nanoparticles in Cancer Biotherapy-A Review.

Viruses. 2025-2-1

[3]
SPION and doxorubicin-loaded polymeric nanocarriers for glioblastoma theranostics.

Drug Deliv Transl Res. 2021-4

[4]
Magnetically Directed Enzyme/Prodrug Prostate Cancer Therapy Based on β-Glucosidase/Amygdalin.

Int J Nanomedicine. 2020-6-29

[5]
Nanoparticle corona artefacts derived from specimen preparation of particle suspensions.

Sci Rep. 2020-3-24

[6]
Immobilization of β-Glucosidase from Thermatoga maritima on Chitin-functionalized Magnetic Nanoparticle via a Novel Thermostable Chitin-binding Domain.

Sci Rep. 2020-2-3

[7]
Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments.

Annu Rev Chem Biomol Eng. 2018-3-26

[8]
Bionanotechnology and the future of glioma.

Surg Neurol Int. 2015-2-13

本文引用的文献

[1]
Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung.

Eur J Pharm Biopharm. 2013-9-18

[2]
Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles.

Nanotechnology. 2013-8-23

[3]
Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles.

Eur J Pharm Biopharm. 2013-11

[4]
The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.

J Control Release. 2012-10-24

[5]
Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells.

J Nanosci Nanotechnol. 2012-3

[6]
Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo.

Eur J Pharm Biopharm. 2012-4-10

[7]
Pharmacologic properties of polyethylene glycol-modified Bacillus thiaminolyticus thiaminase I enzyme.

J Pharmacol Exp Ther. 2012-3-19

[8]
Covalent immobilization of cellulases onto a water-soluble-insoluble reversible polymer.

Appl Biochem Biotechnol. 2012-1-17

[9]
Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles.

Appl Microbiol Biotechnol. 2012-1-12

[10]
Effects of polyethylene glycol on bovine intestine alkaline phosphatase activity and stability.

Biosci Biotechnol Biochem. 2011

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索