Suppr超能文献

聚乙二醇修饰增强了固定在磁性纳米颗粒上的生物活性蛋白质的体内稳定性。

PEG modification enhances the in vivo stability of bioactive proteins immobilized on magnetic nanoparticles.

机构信息

Radiology Department, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430000, Hubei, China.

Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430000, Hubei, China.

出版信息

Biotechnol Lett. 2020 Aug;42(8):1407-1418. doi: 10.1007/s10529-020-02867-4. Epub 2020 Mar 21.

Abstract

OBJECTIVE

To increase the in vivo stability of bioactive proteins via optimized loading methods.

RESULTS

β-Glucosidase (β-Glu), as a model protein, was immobilized on magnetic nanoparticles(denoted as MNP-β-Glu) by chemical coupling methods and was further modified by poly(ethylene glycol) (PEG) molecules (denoted as MNP-β-Glu-PEG) to increase its stability. The physicochemical properties of the as-prepared nanohybrids, including the particle size, zeta potential, and enzyme activity, were well characterized. The proper MNP/β-Glu feed ratio was important for optimizing the particle size. Analysis of enzyme activity showed that the stability of immobilized β-Glu compared with free β-Glu was lower in deionized water and higher in blood serum at 37 °C. MNP-β-Glu-PEG retained 77.9% of the initial activity within 30 days at 4 °C, whereas the free enzyme retained only 58.2%. Pharmacokinetic studies of Sprague-Dawley (SD) rats showed that the MNP-β-Glu-PEG group retained a higher enzyme activity in vivo (41.46% after 50 min) than the MNP-β-Glu group (0.03% after 50 min) and the β-Glu group (0.37% after 50 min). Moreover, in contrast to the MNP-β-Glu group, the enzyme activity was not fully synchronous with the decrease in the Fe concentration in the MNP-β-Glu-PEG group.

CONCLUSIONS

All findings indicated that the method of immobilization on magnetic nanoparticles and PEG modification is promising for the application of bioactive proteins in vivo.

摘要

目的

通过优化载药方法提高生物活性蛋白的体内稳定性。

结果

以β-葡萄糖苷酶(β-Glu)为模型蛋白,通过化学偶联法将其固定在磁性纳米颗粒上(记为 MNP-β-Glu),然后进一步用聚乙二醇(PEG)分子进行修饰(记为 MNP-β-Glu-PEG),以提高其稳定性。所制备的纳米杂化物的物理化学性质,包括粒径、Zeta 电位和酶活性,都得到了很好的表征。适当的 MNP/β-Glu 进料比对于优化粒径很重要。酶活性分析表明,与游离β-Glu 相比,固定化β-Glu 在去离子水和 37°C 血清中的稳定性较低。MNP-β-Glu-PEG 在 4°C 下 30 天内保留了 77.9%的初始活性,而游离酶仅保留了 58.2%。Sprague-Dawley(SD)大鼠的药代动力学研究表明,MNP-β-Glu-PEG 组在体内保持了更高的酶活性(50 分钟后为 41.46%),高于 MNP-β-Glu 组(50 分钟后为 0.03%)和β-Glu 组(50 分钟后为 0.37%)。此外,与 MNP-β-Glu 组相比,MNP-β-Glu-PEG 组的酶活性与 Fe 浓度的下降并不完全同步。

结论

所有发现表明,磁性纳米颗粒固定化和 PEG 修饰的方法有望将生物活性蛋白应用于体内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验