Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada.
Biochemistry. 2014 Jul 22;53(28):4549-56. doi: 10.1021/bi500394m. Epub 2014 Jul 10.
We have investigated the role of redox cooperativity in defining the functional relationship among the three membrane-associated prosthetic groups of Escherichia coli nitrate reductase A: the two hemes (bD and bP) of the membrane anchor subunit (NarI) and the [3Fe-4S] cluster (FS4) of the electron-transfer subunit (NarH). Previously published analyses of potentiometric titrations have exhibited the following anomalous behaviors: (i) fits of titration data for heme bp and the [3Fe-4S] cluster exhibited two apparent components; (ii) heme bD titrated with an apparent electron stoichiometry (n) of <1.0; and (iii) the binding of quinol oxidation inhibitors shifted the reduction potentials of both hemes despite there being only a single quinol oxidation site (Q-site) in close juxtaposition with heme bD. Furthermore, both hemes appeared to be affected despite the absence of major structural shifts upon inhibitor binding, as judged by X-ray crystallography, or evidence of a second Q-site in the vicinity of heme bP. In a re-examination of the redox behavior of hemes bD and bP and FS4, we have developed a cooperative redox model of cofactor interaction. We show that anticooperative interactions provide an explanation for the anomalous behavior. We propose that the role of such anticooperative redox behavior in vivo is to facilitate transmembrane electron transfer across an energy-conserving membrane against an electrochemical potential.
我们研究了氧化还原协同作用在定义大肠杆菌硝酸盐还原酶 A 的三个膜结合辅基之间的功能关系中的作用:膜锚定亚基(NarI)的两个血红素(bD 和 bP)和电子传递亚基(NarH)的[3Fe-4S]簇(FS4)。先前发表的关于电位滴定分析的分析显示出以下异常行为:(i)血红素 bp 和[3Fe-4S]簇的滴定数据拟合表现出两个明显的成分;(ii)血红素 bD 的滴定表现出明显的电子计量比(n)<1.0;(iii)尽管与血红素 bD 紧密相邻只有一个喹啉氧化位点(Q 位点),但醌氧化抑制剂的结合却改变了两个血红素的还原电位。此外,尽管结合抑制剂时没有明显的结构变化,如 X 射线晶体学所判断的,或者在血红素 bP 附近没有第二个 Q 位点的证据,但两个血红素似乎都受到了影响。在对血红素 bD 和 bP 和 FS4 的氧化还原行为进行重新检查时,我们开发了一种辅酶相互作用的协同氧化还原模型。我们表明,反协同相互作用为异常行为提供了解释。我们提出,这种反协同氧化还原行为在体内的作用是促进跨能量守恒膜的跨膜电子转移,以克服电化学势。