Department of Physics, University of Basel , Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
ACS Nano. 2014 Jul 22;8(7):7413-22. doi: 10.1021/nn502641q. Epub 2014 Jul 1.
Using the minima hopping global optimization method at the density functional level, we found low-energy nanostructures for neutral Au26 and its anion. The local-density and a generalized gradient approximation of the exchange–correlation functional predict different nanoscale motifs. We found a vast number of isomers within a small energy range above the respective putative global minima with each method. Photoelectron spectroscopy of Au26(-) under different experimental conditions revealed definitive evidence of the presence of multiple isomers, consistent with the theoretical predictions. Comparison between the experimental and simulated photoelectron spectra suggests that the photoelectron spectra of Au26(-) contain a mixture of three isomers, all of which are low-symmetry core–shell-type nanoclusters with a single internal Au atom. We present a disconnectivity graph for Au26(-) that has been computed completely at the density functional level. The transition states used to build this disconnectivity graph are complete enough to predict Au26(-) to have a possible fluxional shell, which facilitates the understanding of its catalytic activity.
采用密度泛函理论中的极小跳跃全局优化方法,我们为中性 Au26 及其阴离子找到了低能纳米结构。局域密度近似和交换相关泛函的广义梯度近似预测了不同的纳米尺度图案。我们用每种方法在各自假定的全局最小值之上的小能量范围内发现了大量的异构体。不同实验条件下 Au26(-)的光电子能谱提供了存在多种异构体的明确证据,与理论预测一致。实验和模拟光电子能谱的比较表明,Au26(-)的光电子能谱包含三种异构体的混合物,它们都是具有单个内部 Au 原子的低对称核壳型纳米团簇。我们提出了一个完全在密度泛函水平上计算的 Au26(-)离解图。用于构建这个离解图的过渡态足够完整,可以预测 Au26(-)可能具有流动性壳,这有助于理解其催化活性。