Suppr超能文献

在小鼠模型中植入下腔静脉间置移植物。

Implantation of inferior vena cava interposition graft in mouse model.

作者信息

Lee Yong-Ung, Yi Tai, Tara Shuhei, Lee Avione Y, Hibino Narutoshi, Shinoka Toshiharu, Breuer Christopher K

机构信息

Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital;

Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital.

出版信息

J Vis Exp. 2014 Jun 4(88):51632. doi: 10.3791/51632.

Abstract

Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are often used for reconstructive surgery to treat congenital cardiac anomalies. The long-term clinical results showed excellent patency rates, however, with significant incidence of stenosis. To investigate the cellular and molecular mechanisms of vascular neotissue formation and prevent stenosis development in tissue engineered vascular grafts (TEVGs), we developed a mouse model of the graft with approximately 1 mm internal diameter. First, the TEVGs were assembled from biodegradable tubular scaffolds fabricated from a polyglycolic acid nonwoven felt mesh coated with ε-caprolactone and L-lactide copolymer. The scaffolds were then placed in a lyophilizer, vacuumed for 24 hr, and stored in a desiccator until cell seeding. Second, bone marrow was collected from donor mice and mononuclear cells were isolated by density gradient centrifugation. Third, approximately one million cells were seeded on a scaffold and incubated O/N. Finally, the seeded scaffolds were then implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. The implanted grafts demonstrated excellent patency (>90%) without evidence of thromboembolic complications or aneurysmal formation. This murine model will aid us in understanding and quantifying the cellular and molecular mechanisms of neotissue formation in the TEVG.

摘要

接种骨髓单个核细胞(BMCs)的可生物降解支架常用于重建手术,以治疗先天性心脏畸形。长期临床结果显示通畅率极佳,然而,狭窄发生率也很高。为了研究组织工程血管移植物(TEVG)中血管新组织形成的细胞和分子机制,并预防狭窄的发展,我们建立了一种内径约为1毫米的移植物小鼠模型。首先,TEVG由可生物降解的管状支架组装而成,该支架由涂有ε-己内酯和L-丙交酯共聚物的聚乙醇酸非织造毡网制成。然后将支架放入冻干机中,抽真空24小时,并储存在干燥器中直至接种细胞。其次,从供体小鼠中采集骨髓,并通过密度梯度离心分离单个核细胞。第三,将大约一百万个细胞接种到支架上,并孵育过夜。最后,将接种后的支架作为肾下腔静脉间置移植物植入C57BL/6小鼠体内。植入的移植物显示出极佳的通畅率(>90%),没有血栓栓塞并发症或动脉瘤形成的迹象。这种小鼠模型将有助于我们理解和量化TEVG中新组织形成的细胞和分子机制。

相似文献

1
Implantation of inferior vena cava interposition graft in mouse model.
J Vis Exp. 2014 Jun 4(88):51632. doi: 10.3791/51632.
2
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
3
Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts.
J Thorac Cardiovasc Surg. 2012 Mar;143(3):696-703. doi: 10.1016/j.jtcvs.2011.06.046. Epub 2012 Jan 12.
8
Tissue-engineered vascular grafts: does cell seeding matter?
J Pediatr Surg. 2010 Jun;45(6):1299-305. doi: 10.1016/j.jpedsurg.2010.02.102.
9
Comparison of the biological equivalence of two methods for isolating bone marrow mononuclear cells for fabricating tissue-engineered vascular grafts.
Tissue Eng Part C Methods. 2015 Jun;21(6):597-604. doi: 10.1089/ten.TEC.2014.0442. Epub 2014 Dec 29.
10
Tissue-engineered Vascular Grafts in Children With Congenital Heart Disease: Intermediate Term Follow-up.
Semin Thorac Cardiovasc Surg. 2018 Summer;30(2):175-179. doi: 10.1053/j.semtcvs.2018.02.002. Epub 2018 Feb 7.

引用本文的文献

1
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
2
Beyond Classic Anastomoses Training Models: Overview of Aneurysm Creation in Rodent Vessel Model.
Front Surg. 2022 Apr 18;9:884675. doi: 10.3389/fsurg.2022.884675. eCollection 2022.
4
Systematic Review of Tissue-Engineered Vascular Grafts.
Front Bioeng Biotechnol. 2021 Nov 3;9:771400. doi: 10.3389/fbioe.2021.771400. eCollection 2021.
5
Zoledronate alters natural progression of tissue-engineered vascular grafts.
FASEB J. 2021 Oct;35(10):e21849. doi: 10.1096/fj.202001606RR.
6
Regenerative and durable small-diameter graft as an arterial conduit.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12710-12719. doi: 10.1073/pnas.1905966116. Epub 2019 Jun 10.
7
Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model.
Regen Med. 2019 May;14(5):389-408. doi: 10.2217/rme-2018-0133. Epub 2019 Jun 10.
8
Angiotensin II receptor I blockade prevents stenosis of tissue engineered vascular grafts.
FASEB J. 2018 Jun 15;32(12):fj201800458. doi: 10.1096/fj.201800458.

本文引用的文献

2
Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice.
J Biomech. 2013 Sep 3;46(13):2277-82. doi: 10.1016/j.jbiomech.2013.06.013. Epub 2013 Jul 13.
5
Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel.
FASEB J. 2011 Aug;25(8):2731-9. doi: 10.1096/fj.11-182246. Epub 2011 May 12.
6
Tissue-engineered vascular grafts: does cell seeding matter?
J Pediatr Surg. 2010 Jun;45(6):1299-305. doi: 10.1016/j.jpedsurg.2010.02.102.
7
Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4669-74. doi: 10.1073/pnas.0911465107. Epub 2010 Mar 5.
8
Late-term results of tissue-engineered vascular grafts in humans.
J Thorac Cardiovasc Surg. 2010 Feb;139(2):431-6, 436.e1-2. doi: 10.1016/j.jtcvs.2009.09.057.
9
Tissue-engineered arterial grafts: long-term results after implantation in a small animal model.
J Pediatr Surg. 2009 Jun;44(6):1127-32; discussion 1132-3. doi: 10.1016/j.jpedsurg.2009.02.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验