Suppr超能文献

骨髓单个核细胞接种在纳米纤维血管移植物中的作用。

Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.

机构信息

1 Department of Cardiac Surgery, Johns Hopkins University , Baltimore, Maryland.

2 Tissue Engineering and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio.

出版信息

Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.

Abstract

OBJECTIVE

Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs.

METHODS

Nanofiber scaffolds were fabricated from co-electrospinning a solution of polyglycolic acid and a solution of poly(ι-lactide-co-ɛ-caprolactone) and characterized with scanning electron microscopy. Platelet activation and cell seeding efficiency were assessed by ATP secretion and DNA assays, respectively. Cell-free and BM-MNC seeded scaffolds were implanted in C57BL/6 mice (n = 15/group) as infrarenal inferior vena cava (IVC) interposition conduits. Animals were followed with serial ultrasonography for 6 months, after which grafts were harvested for evaluation of patency and neotissue formation by histology and immunohistochemistry (n = 10/group) and PCR (n = 5/group) analyses.

RESULTS

BM-MNC seeding of electrospun scaffolds prevented stenosis compared with unseeded scaffolds (seeded: 9/10 patent vs. unseeded: 1/10 patent, p = 0.0003). Seeded vascular grafts demonstrated concentric laminated smooth muscle cells, a confluent endothelial monolayer, and a collagen-rich extracellular matrix. Platelet-derived ATP, a marker of platelet activation, was significantly reduced after incubating thrombin-activated platelets in the presence of seeded scaffolds compared with unseeded scaffolds (p < 0.0001). In addition, reduced macrophage infiltration and a higher M2 macrophage percentage were observed in seeded grafts.

CONCLUSIONS

The beneficial effects of BM-MNC seeding apply to electrospun TEVG scaffolds by attenuating stenosis through the regulation of platelet activation and inflammatory macrophage function, leading to well-organized neotissue formation. BM-MNC seeding is a valuable technique that can be used in the rational design of optimal TEVG scaffolds.

摘要

目的

静电纺丝是一种很有前途的技术,它为心血管组织工程提供了可生物降解的纳米纤维支架。然而,这些材料的成功应用受到了限制,组织工程血管移植物(TEVG)的最佳支架参数组合仍难以确定。本研究旨在评估骨髓单核细胞(BM-MNC)在静电纺丝支架中的接种效果,以支持优化 TEVG 的合理设计。

方法

通过共静电纺丝聚乙二醇酸溶液和聚(L-丙交酯-co-ε-己内酯)溶液制备纳米纤维支架,并通过扫描电子显微镜进行表征。通过 ATP 分泌和 DNA 测定分别评估血小板激活和细胞接种效率。将无细胞和 BM-MNC 接种的支架分别植入 C57BL/6 小鼠(每组 n=15)作为肾下下腔静脉(IVC)间置导管。动物通过连续超声检查随访 6 个月,然后取出移植物进行通畅性和新生组织形成的评估,通过组织学和免疫组织化学(每组 n=10)和 PCR(每组 n=5)分析。

结果

与未接种支架相比,BM-MNC 接种静电纺丝支架可预防狭窄(接种:9/10 通畅;未接种:1/10 通畅,p=0.0003)。接种的血管移植物显示出同心层状平滑肌细胞、连续的内皮单层和富含胶原蛋白的细胞外基质。与未接种支架相比,在存在接种支架的情况下孵育凝血酶激活的血小板后,血小板衍生的 ATP(血小板激活的标志物)显著减少(p<0.0001)。此外,在接种的移植物中观察到巨噬细胞浸润减少和 M2 巨噬细胞比例升高。

结论

BM-MNC 接种对静电纺丝 TEVG 支架的有益效果通过调节血小板激活和炎症性巨噬细胞功能来减轻狭窄,从而导致组织形成良好。BM-MNC 接种是一种有价值的技术,可用于优化 TEVG 支架的合理设计。

相似文献

1
Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts.
Tissue Eng Part A. 2018 Jan;24(1-2):135-144. doi: 10.1089/ten.TEA.2017.0044. Epub 2017 Jun 13.
5
Comparison of the biological equivalence of two methods for isolating bone marrow mononuclear cells for fabricating tissue-engineered vascular grafts.
Tissue Eng Part C Methods. 2015 Jun;21(6):597-604. doi: 10.1089/ten.TEC.2014.0442. Epub 2014 Dec 29.
6
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
7
Tissue-engineered vascular grafts: does cell seeding matter?
J Pediatr Surg. 2010 Jun;45(6):1299-305. doi: 10.1016/j.jpedsurg.2010.02.102.
9
Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
PLoS One. 2016 Jul 28;11(7):e0158555. doi: 10.1371/journal.pone.0158555. eCollection 2016.
10
Implantation of inferior vena cava interposition graft in mouse model.
J Vis Exp. 2014 Jun 4(88):51632. doi: 10.3791/51632.

引用本文的文献

2
Stem cells and bio scaffolds for the treatment of cardiovascular diseases: new insights.
Front Cell Dev Biol. 2024 Dec 12;12:1472103. doi: 10.3389/fcell.2024.1472103. eCollection 2024.
3
Small diameter vascular grafts: progress on electrospinning matrix/stem cell blending approach.
Front Bioeng Biotechnol. 2024 May 14;12:1385032. doi: 10.3389/fbioe.2024.1385032. eCollection 2024.
4
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
5
Assessing the Biocompatibility and Regeneration of Electrospun-Nanofiber Composite Tracheal Grafts.
Laryngoscope. 2024 Mar;134(3):1155-1162. doi: 10.1002/lary.30955. Epub 2023 Aug 14.
6
Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations.
Front Bioeng Biotechnol. 2023 Jan 10;10:1097334. doi: 10.3389/fbioe.2022.1097334. eCollection 2022.
7
Bone Tissue Engineering in the Treatment of Bone Defects.
Pharmaceuticals (Basel). 2022 Jul 17;15(7):879. doi: 10.3390/ph15070879.
8
Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth.
Commun Med (Lond). 2022 Jan 10;2:3. doi: 10.1038/s43856-021-00063-7. eCollection 2022.
9
Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft.
Adv Healthc Mater. 2022 Jun;11(12):e2200045. doi: 10.1002/adhm.202200045. Epub 2022 Mar 27.
10
Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration.
ACS Appl Bio Mater. 2021 Jan 18;4(1):545-558. doi: 10.1021/acsabm.0c01114. Epub 2020 Dec 24.

本文引用的文献

1
Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft.
J Vasc Surg. 2017 Jul;66(1):243-250. doi: 10.1016/j.jvs.2016.05.096. Epub 2016 Sep 26.
2
Pilot Mouse Study of 1 mm Inner Diameter (ID) Vascular Graft Using Electrospun Poly(ester urea) Nanofibers.
Adv Healthc Mater. 2016 Sep;5(18):2427-36. doi: 10.1002/adhm.201600400. Epub 2016 Jul 8.
3
Association between inflammation biomarkers, anatomic extent of deep venous thrombosis, and venous symptoms after deep venous thrombosis.
J Vasc Surg Venous Lymphat Disord. 2015 Oct;3(4):347-353.e1. doi: 10.1016/j.jvsv.2015.04.005. Epub 2015 Aug 1.
5
Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice.
Ann Biomed Eng. 2016 Aug;44(8):2402-2416. doi: 10.1007/s10439-015-1545-7. Epub 2016 Jan 21.
6
Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model.
Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):2003-10. doi: 10.1161/ATVBAHA.115.306027. Epub 2015 Jul 16.
7
The innate immune system contributes to tissue-engineered vascular graft performance.
FASEB J. 2015 Jun;29(6):2431-8. doi: 10.1096/fj.14-268334. Epub 2015 Feb 20.
8
Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation.
Tissue Eng Part A. 2015 May;21(9-10):1529-38. doi: 10.1089/ten.tea.2014.0524. Epub 2015 Feb 24.
10
Comparison of the biological equivalence of two methods for isolating bone marrow mononuclear cells for fabricating tissue-engineered vascular grafts.
Tissue Eng Part C Methods. 2015 Jun;21(6):597-604. doi: 10.1089/ten.TEC.2014.0442. Epub 2014 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验