Mao Keke, Li Lei, Zhang Wenhua, Pei Yong, Zeng Xiao Cheng, Wu Xiaojun, Yang Jinlong
1] Key Lab of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China [2] Hefei National Lab for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Department of Chemistry and Department Mechanics and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Sci Rep. 2014 Jun 25;4:5441. doi: 10.1038/srep05441.
The CO oxidation behaviors on single Au atom embedded in two-dimensional h-BN monolayer are investigated on the basis of first-principles calculations, quantum Born-Oppenheim molecular dynamic simulations (BOMD) and micro-kinetic analysis. We show that CO oxidation on h-BN monolayer support single gold atom prefers an unreported tri-molecular Eley-Rideal (E-R) reaction, where O2 molecule is activated by two pre-adsorbed CO molecules. The formed OCOAuOCO intermediate dissociates into two CO2 molecules synchronously, which is the rate-limiting step with an energy barrier of 0.47 eV. By using the micro-kinetic analysis, the CO oxidation following the tri-molecular E-R reaction pathway entails much higher reaction rate (1.43 × 10(5) s(-1)) than that of bimolecular Langmuir-Hinshelwood (L-H) pathway (4.29 s(-1)). Further, the quantum BOMD simulation at the temperature of 300 K demonstrates the complete reaction process in real time.
基于第一性原理计算、量子玻恩-奥本海默分子动力学模拟(BOMD)和微观动力学分析,研究了嵌入二维h-BN单层中的单个金原子上的CO氧化行为。我们表明,h-BN单层负载单个金原子上的CO氧化倾向于一种未报道的三分子埃利-里德(E-R)反应,其中O2分子被两个预先吸附的CO分子激活。形成的OCOAuOCO中间体同步分解为两个CO2分子,这是速率限制步骤,能垒为0.47 eV。通过微观动力学分析,遵循三分子E-R反应途径的CO氧化反应速率(1.43×10(5) s(-1))比双分子朗缪尔-欣谢尔伍德(L-H)途径(4.29 s(-1))高得多。此外,在300 K温度下的量子BOMD模拟实时展示了完整的反应过程。