Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland.
J Chem Theory Comput. 2023 Jul 11;19(13):4023-4032. doi: 10.1021/acs.jctc.3c00444. Epub 2023 Jun 20.
The domain-based local pair natural orbital (PNO) coupled-cluster DLPNO-CCSD(T) method has been proven to provide accurate single-point energies at a fraction of the cost of canonical CCSD(T) calculations. However, the desired "chemical accuracy" can only be obtained with a large PNO space and extended basis set. We present a simple yet accurate and efficient correction scheme based on a perturbative approach. Here, in addition to DLPNO-CCSD(T) energy, one calculates DLPNO-MP2 correlation energy with the same settings as in the preceding coupled-cluster calculation. In the next step, the canonical MP2 correlation energy is obtained in the same orbital basis. This can be efficiently performed for essentially all molecule sizes accessible with the DLPNO-CCSD(T) method. By taking the difference between the canonical MP2 and DLPNO-MP2 energies, we obtain a correction term that can be added to the DLPNO-CCSD(T) correlation energy. This way, one can obtain the total correlation energy close to the limit of the complete PNO space (cPNO). The presented approach allows us to significantly increase the accuracy of the DLPNO-CCSD(T) method for both closed- and open-shell systems. The latter are known to be especially challenging for locally correlated methods. Unlike the previously developed PNO extrapolation procedure by Altun, Neese, and Bistoni ( 2020, 16, 6142-6149), this strategy allows us to get the DLPNO-CCSD(T) correlation energy at the cPNO limit in a cost-efficient way, resulting in a minimal overall increase in calculation time as compared to the uncorrected method.
基于域的局部对自然轨道(PNO)耦合簇 DLPNO-CCSD(T)方法已被证明可以以经典 CCSD(T)计算成本的一小部分提供准确的单点能。然而,只有使用大的 PNO 空间和扩展基组才能获得所需的“化学精度”。我们提出了一种简单但准确且高效的修正方案,该方案基于微扰方法。在此,除了 DLPNO-CCSD(T)能量外,我们还使用与前面的耦合簇计算相同的设置计算 DLPNO-MP2 相关能。在下一个步骤中,在相同的轨道基中获得经典的 MP2 相关能。对于 DLPNO-CCSD(T) 方法可访问的基本上所有分子大小,都可以有效地执行此操作。通过取经典 MP2 和 DLPNO-MP2 能量之间的差值,我们得到一个可以添加到 DLPNO-CCSD(T)相关能中的校正项。通过这种方式,可以获得接近完整 PNO 空间(cPNO)限制的总相关能。所提出的方法允许我们显著提高闭壳层和开壳层系统的 DLPNO-CCSD(T)方法的准确性。众所周知,局部相关方法对后者特别具有挑战性。与 Altun、Neese 和 Bistoni(2020 年,16,6142-6149)之前开发的 PNO 外推程序不同,这种策略允许我们以高效的成本在 cPNO 极限下获得 DLPNO-CCSD(T)相关能,与未校正方法相比,整体计算时间的增加最小。