Chu Shanshan, Wang Jiao, Cheng Hao, Yang Qing, Yu Deyue
College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, People's Republic of China.
BMC Genet. 2014 Jun 24;15:76. doi: 10.1186/1471-2156-15-76.
Previous studies suggest that the metabolic pathway structure influences the selection and evolution rates of involved genes. However, most of these studies have exclusively considered a single gene copy encoding each enzyme in the metabolic pathway. Considering multiple-copy encoding enzymes could provide direct evidence of gene evolution and duplication patterns in metabolic pathways. We conducted a detailed analysis of the phylogeny, synteny, evolutionary rate and selection pressure of the genes in the isoflavonoid metabolic pathway of soybeans.
The results revealed that 1) only the phenylalanine ammonia-lyase (PAL) gene family most upstream from the pathway preserved all of the ancient and recent segmental duplications and maintained a strongly conserved synteny among these duplicated segments; gene families encoding branch-point enzymes with higher pleiotropy tended to retain more types of duplication; and genes encoding chalcone reductase (CHR) and isoflavone synthase (IFS) specific for legumes retained only recent segmental duplications; 2) downstream genes evolved faster than upstream genes and were subject to positive selection or relaxed selection constraints; 3) gene members encoding enzymes with high pleiotropy at the branching points were more likely to have undergone evolutionary differentiation, which may correspond to their functional divergences.
We reconciled our results with existing controversies and proposed that gene copies at branch points with higher connectivity might be under stronger selective constraints and that the gene copies controlling metabolic flux allocation underwent positive selection. Our analyses demonstrated that the structure and function of a metabolic pathway shapes gene duplication and the evolutionary constraints of constituent enzymes.
先前的研究表明,代谢途径结构会影响相关基因的选择和进化速率。然而,这些研究大多只考虑了代谢途径中每个酶由单一基因拷贝编码的情况。考虑多拷贝编码酶可以为代谢途径中的基因进化和复制模式提供直接证据。我们对大豆异黄酮代谢途径中的基因进行了系统发育、共线性、进化速率和选择压力的详细分析。
结果显示:1)该途径最上游的苯丙氨酸解氨酶(PAL)基因家族保留了所有古老和近期的片段重复,并在这些重复片段之间保持了高度保守的共线性;编码具有较高多效性的分支点酶的基因家族倾向于保留更多类型的重复;而豆科植物特有的查尔酮还原酶(CHR)和异黄酮合酶(IFS)的编码基因仅保留了近期的片段重复;2)下游基因比上游基因进化得更快,并且受到正选择或放松的选择限制;3)在分支点编码具有高多效性酶的基因成员更有可能经历了进化分化,这可能与其功能差异相对应。
我们将研究结果与现有争议进行了协调,并提出具有较高连通性的分支点处的基因拷贝可能受到更强的选择限制,且控制代谢通量分配的基因拷贝经历了正选择。我们的分析表明,代谢途径的结构和功能塑造了基因复制以及组成酶的进化限制。