Tran Bich Chau, Teil Marie Jeanne, Blanchard Martine, Alliot Fabrice, Chevreuil Marc
HeSam Université/Ecole Pratique des Hautes Etudes/Laboratoire Hydrologie Environnement, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France; Sorbonne Universités, Université Pierre et Marie Curie, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France; CNRS, Unité Mixte de Recherche UMR 7619 METIS, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France.
HeSam Université/Ecole Pratique des Hautes Etudes/Laboratoire Hydrologie Environnement, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France; Sorbonne Universités, Université Pierre et Marie Curie, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France; CNRS, Unité Mixte de Recherche UMR 7619 METIS, Tour 46/56, 4 place Jussieu, 75252 Paris Cedex 05, France.
Chemosphere. 2015 Jan;119:43-51. doi: 10.1016/j.chemosphere.2014.04.036. Epub 2014 Jun 22.
Our purpose was to characterize the fate of bisphenol A (BPA) and phthalate contamination simultaneously in a sewage network and a watercourse, in relation with hydrological and climatic conditions. An elementary catchment of the Seine basin, receiving effluents from a wastewater treatment plant (WWTP), was chosen because of its basic hydrological features. BPA and DEHP concentrations in the WWTP inputs were 4 and 33 μg L(-1) whereas in the outputs, they were only 0.4 and 2 μg L(-1), respectively. Contaminant ratios in the suspended sediment phase of the WWTP inputs ranged from 0.5% to 88%, related to their molecular properties. BPA and phthalates were effectively removed in the WWTP (>90% for both compounds), by degradation and decantation. Upstream of the discharge, river concentrations ranged from 0.002 to 0.175 μg L(-1) for BPA and from 0.16 to 0.90 μg L(-1) for DEHP. Downstream from the WWTP outputs, concentrations ranged from 0.11 to 0.79 μg L(-1) for BPA and from 0.31 μg L(-1) to 1.7 μg L(-1) for DEHP: the WWTP discharge led to contaminant increases of 3.8 and 2 times, respectively. Far downstream, concentrations were lower ranging from 0.11 to 0.19 μg L(-1) for BPA and from 0.36 μg L(-1) to 1.1 μg L(-1) for DEHP. BPA and phthalates displayed opposite seasonal variations with a decrease for the first one and an increase for the second one during summer. BPA contamination in the Charmoise river derived mainly from the WWTP, while phthalate contamination was attributed to both WWTP discharges and diffuse sources such as atmospheric bulk deposition.
我们的目的是结合水文和气候条件,同时描述污水管网和水道中双酚A(BPA)和邻苯二甲酸盐污染的归宿。由于其基本水文特征,我们选择了塞纳河流域的一个基本集水区,该集水区接收来自污水处理厂(WWTP)的废水。污水处理厂进水口的BPA和DEHP浓度分别为4和33μg L⁻¹,而在出水口,它们分别仅为0.4和2μg L⁻¹。污水处理厂进水口悬浮沉积物相中污染物的比例在0.5%至88%之间,这与其分子特性有关。BPA和邻苯二甲酸盐在污水处理厂中通过降解和倾析被有效去除(两种化合物的去除率均>90%)。在排放上游,河流中BPA的浓度范围为0.002至0.175μg L⁻¹,DEHP的浓度范围为0.16至0.90μg L⁻¹。在污水处理厂出水口下游,BPA的浓度范围为0.11至0.79μg L⁻¹,DEHP的浓度范围为0.31μg L⁻¹至1.7μg L⁻¹:污水处理厂的排放分别导致污染物增加了3.8倍和2倍。在更下游,浓度较低,BPA的浓度范围为0.11至0.19μg L⁻¹,DEHP的浓度范围为0.36μg L⁻¹至1.1μg L⁻¹。BPA和邻苯二甲酸盐呈现相反的季节变化,夏季时前者减少而后者增加。沙尔穆瓦斯河中BPA污染主要源自污水处理厂,而邻苯二甲酸盐污染则归因于污水处理厂排放以及大气总沉降等扩散源。