Suppr超能文献

基于随时间发生的暴露创建配对生存数据的匹配方法:一项应用于乳腺癌的模拟研究

Matching methods to create paired survival data based on an exposure occurring over time: a simulation study with application to breast cancer.

作者信息

Savignoni Alexia, Giard Caroline, Tubert-Bitter Pascale, Rycke Yann De

机构信息

Service de Biostatistique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.

出版信息

BMC Med Res Methodol. 2014 Jun 26;14:83. doi: 10.1186/1471-2288-14-83.

Abstract

BACKGROUND

Paired survival data are often used in clinical research to assess the prognostic effect of an exposure. Matching generates correlated censored data expecting that the paired subjects just differ from the exposure. Creating pairs when the exposure is an event occurring over time could be tricky. We applied a commonly used method, Method 1, which creates pairs a posteriori and propose an alternative method, Method 2, which creates pairs in "real-time". We used two semi-parametric models devoted to correlated censored data to estimate the average effect of the exposure HR¯(t): the Holt and Prentice (HP), and the Lee Wei and Amato (LWA) models. Contrary to the HP, the LWA allowed adjustment for the matching covariates (LWAa) and for an interaction (LWAi) between exposure and covariates (assimilated to prognostic profiles). The aim of our study was to compare the performances of each model according to the two matching methods.

METHODS

Extensive simulations were conducted. We simulated cohort data sets on which we applied the two matching methods, the HP and the LWA. We used our conclusions to assess the prognostic effect of subsequent pregnancy after treatment for breast cancer in a female cohort treated and followed up in eight french hospitals.

RESULTS

In terms of bias and RMSE, Method 2 performed better than Method 1 in designing the pairs, and LWAa was the best model for all the situations except when there was an interaction between exposure and covariates, for which LWAi was more appropriate. On our real data set, we found opposite effects of pregnancy according to the six prognostic profiles, but none were statistically significant. We probably lacked statistical power or reached the limits of our approach. The pairs' censoring options chosen for combination Method 2 - LWA had to be compared with others.

CONCLUSIONS

Correlated censored data designing by Method 2 seemed to be the most pertinent method to create pairs, when the criterion, which characterized the pair, was an exposure occurring over time. In such a setting, the LWA was the most appropriate model.

摘要

背景

配对生存数据常用于临床研究,以评估暴露因素的预后效果。匹配会产生相关的删失数据,预期配对的个体仅在暴露因素上存在差异。当暴露因素是随时间发生的事件时,进行配对可能会很棘手。我们应用了一种常用方法(方法1),该方法事后创建配对,并提出了另一种方法(方法2),即“实时”创建配对。我们使用了两种专门用于相关删失数据的半参数模型来估计暴露因素的平均效应HR¯(t):霍尔特和普伦蒂斯(HP)模型以及李·魏和阿马托(LWA)模型。与HP模型不同,LWA模型允许对匹配协变量(LWAa)以及暴露因素与协变量之间的相互作用(LWAi)(等同于预后特征)进行调整。我们研究的目的是根据两种匹配方法比较每个模型的性能。

方法

进行了广泛的模拟。我们模拟了队列数据集,并在其上应用了两种匹配方法、HP模型和LWA模型。我们利用得出的结论评估了在法国八家医院接受治疗和随访的女性队列中,乳腺癌治疗后后续妊娠的预后效果。

结果

在偏差和均方根误差方面,方法2在设计配对时比方法1表现更好,并且除了暴露因素与协变量之间存在相互作用的情况(此时LWAi模型更合适)外,LWAa模型在所有情况下都是最佳模型。在我们的真实数据集上,根据六种预后特征,我们发现妊娠有相反的效应,但均无统计学意义。我们可能缺乏统计效力或达到了方法的极限。必须将为组合方法2 - LWA选择的配对删失选项与其他选项进行比较。

结论

当表征配对的标准是随时间发生的暴露因素时,通过方法2设计相关删失数据似乎是创建配对的最恰当方法。在这种情况下,LWA模型是最合适的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd8/4118324/cca04bc95ed1/1471-2288-14-83-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验